These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 31617959)

  • 21. Effect of Ag-Decorated BiVO
    Nga TTT; Huang YC; Chen JL; Chen CL; Lin BH; Yeh PH; Du CH; Chiou JW; Pong WF; Arul KT; Dong CL; Chou WC
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296846
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoelectrochemical Solar Water Splitting: The Role of the Carbon Nanomaterials in Bismuth Vanadate Composite Photoanodes toward Efficient Charge Separation and Transport.
    Prakash J; Prasad U; Alexander R; Bahadur J; Dasgupta K; Kannan ANM
    Langmuir; 2019 Nov; 35(45):14492-14504. PubMed ID: 31618038
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scaling up BiVO
    Patil Kunturu P; Lavorenti M; Bera S; Johnson H; Kinge S; van de Sanden MCM; Tsampas MN
    ChemSusChem; 2024 Jan; 17(2):e202300969. PubMed ID: 37792861
    [TBL] [Abstract][Full Text] [Related]  

  • 24. All Printed Photoanode/Photovoltaic Mini-Module for Water Splitting.
    Xu Z; Chen L; Brabec CJ; Guo F
    Small Methods; 2023 Oct; 7(10):e2300619. PubMed ID: 37382406
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deposition of zinc cobaltite nanoparticles onto bismuth vanadate for enhanced photoelectrochemical water splitting.
    Majumder S; Quang ND; Hung NM; Chinh ND; Kim C; Kim D
    J Colloid Interface Sci; 2021 Oct; 599():453-466. PubMed ID: 33962206
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low-bias photoelectrochemical water splitting via mediating trap states and small polaron hopping.
    Wu H; Zhang L; Du A; Irani R; van de Krol R; Abdi FF; Ng YH
    Nat Commun; 2022 Oct; 13(1):6231. PubMed ID: 36266344
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimization of amorphous silicon double junction solar cells for an efficient photoelectrochemical water splitting device based on a bismuth vanadate photoanode.
    Han L; Abdi FF; Perez Rodriguez P; Dam B; van de Krol R; Zeman M; Smets AH
    Phys Chem Chem Phys; 2014 Mar; 16(9):4220-9. PubMed ID: 24452785
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synergistic doping effects of a ZnO:N/BiVO
    Kim D; Zhang Z; Yong K
    Nanoscale; 2018 Nov; 10(43):20256-20265. PubMed ID: 30362492
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancing the photoelectrochemical activity of monoclinic BiVO
    Li S; Yan X; He J
    Phys Chem Chem Phys; 2023 Jul; 25(28):18866-18873. PubMed ID: 37403608
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dual Modification of a BiVO
    Gao L; Li F; Hu H; Long X; Xu N; Hu Y; Wei S; Wang C; Ma J; Jin J
    ChemSusChem; 2018 Aug; 11(15):2502-2509. PubMed ID: 29863749
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly Efficient Photoelectrochemical Water Splitting with an Immobilized Molecular Co
    Wang Y; Li F; Zhou X; Yu F; Du J; Bai L; Sun L
    Angew Chem Int Ed Engl; 2017 Jun; 56(24):6911-6915. PubMed ID: 28474835
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photoelectrochemical Water Splitting System--A Study of Interfacial Charge Transfer with Scanning Electrochemical Microscopy.
    Zhang B; Zhang X; Xiao X; Shen Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1606-14. PubMed ID: 26720831
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The impact of iron-boron electrocatalysts on the charge transport and oxygen evolution reaction of bismuth vanadate photoanodes.
    Hu Y; Hu Q; Qi Y; Zhang W; Liu C; Wang Y; Guan H; Hao L
    Dalton Trans; 2023 Jun; 52(22):7544-7550. PubMed ID: 37183969
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface Hydroxylation during Water Splitting Promotes the Photoactivity of BiVO
    Zhang Y; Cheng C; Zhou Z; Long R; Fang WH
    J Phys Chem Lett; 2023 Oct; 14(40):9096-9102. PubMed ID: 37791802
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two-Step Process of a Crystal Facet-Modulated BiVO
    Lai CC; Chen JW; Chang JC; Kuo CY; Liu YC; Yang JC; Hsieh YT; Tseng SW; Pu YC
    ACS Appl Mater Interfaces; 2022 Jun; 14(21):24919-24928. PubMed ID: 35574762
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Boosting Charge Transport in BiVO
    Lu Y; Yang Y; Fan X; Li Y; Zhou D; Cai B; Wang L; Fan K; Zhang K
    Adv Mater; 2022 Feb; 34(8):e2108178. PubMed ID: 34902189
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced Photoelectrochemical Water Oxidation Performance by Fluorine Incorporation in BiVO
    Rohloff M; Anke B; Kasian O; Zhang S; Lerch M; Scheu C; Fischer A
    ACS Appl Mater Interfaces; 2019 May; 11(18):16430-16442. PubMed ID: 31017393
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved photoelectrochemical activity of CaFe2O4/BiVO4 heterojunction photoanode by reduced surface recombination in solar water oxidation.
    Kim ES; Kang HJ; Magesh G; Kim JY; Jang JW; Lee JS
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17762-9. PubMed ID: 25232699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Versatile Nature of Oxygen Vacancies in Bismuth Vanadate Bulk and (001) Surface.
    Hegner FS; Forrer D; Galán-Mascarós JR; López N; Selloni A
    J Phys Chem Lett; 2019 Nov; 10(21):6672-6678. PubMed ID: 31608645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced Photoelectrochemical Water Splitting through Bismuth Vanadate with a Photon Upconversion Luminescent Reflector.
    Choi D; Nam SK; Kim K; Moon JH
    Angew Chem Int Ed Engl; 2019 May; 58(21):6891-6895. PubMed ID: 30937999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.