These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 31617961)
1. The influence of ultrafine-grained structure on the mechanical properties and biocompatibility of austenitic stainless steels. Rybalchenko OV; Anisimova NY; Kiselevsky MV; Belyakov AN; Tokar AA; Terent'ev VF; Prosvirnin DV; Rybalchenko GV; Raab GI; Dobatkin SV J Biomed Mater Res B Appl Biomater; 2020 May; 108(4):1460-1468. PubMed ID: 31617961 [TBL] [Abstract][Full Text] [Related]
2. On the mechanical behavior of austenitic stainless steel with nano/ultrafine grains and comparison with micrometer austenitic grains counterpart and their biological functions. Gong N; Hu C; Hu B; An B; Misra RDK J Mech Behav Biomed Mater; 2020 Jan; 101():103433. PubMed ID: 31539734 [TBL] [Abstract][Full Text] [Related]
3. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications. Talha M; Behera CK; Sinha OP Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3563-75. PubMed ID: 23910251 [TBL] [Abstract][Full Text] [Related]
4. Tailoring Surface Hydrophilicity Property for Biomedical 316L and 304 Stainless Steels: A Special Perspective on Studying Osteoconductivity and Biocompatibility. Peng C; Izawa T; Zhu L; Kuroda K; Okido M ACS Appl Mater Interfaces; 2019 Dec; 11(49):45489-45497. PubMed ID: 31714730 [TBL] [Abstract][Full Text] [Related]
6. Effect of Zr, Nb and Ti addition on injection molded 316L stainless steel for bio-applications: Mechanical, electrochemical and biocompatibility properties. Gulsoy HO; Pazarlioglu S; Gulsoy N; Gundede B; Mutlu O J Mech Behav Biomed Mater; 2015 Nov; 51():215-24. PubMed ID: 26275484 [TBL] [Abstract][Full Text] [Related]
7. The significance of phase reversion-induced nanograined/ultrafine-grained structure on the load-controlled deformation response and related mechanism in copper-bearing austenitic stainless steel. Hu CY; Somani MC; Misra RDK; Yang CG J Mech Behav Biomed Mater; 2020 Apr; 104():103666. PubMed ID: 32174424 [TBL] [Abstract][Full Text] [Related]
8. High-manganese and nitrogen stabilized austenitic stainless steel (Fe-18Cr-22Mn-0.65N): a material with a bright future for orthopedic implant devices. Kumar CS; Singh G; Poddar S; Varshney N; Mahto SK; Podder AS; Chattopadhyay K; Rastogi A; Singh V; Mahobia GS Biomed Mater; 2021 Sep; 16(6):. PubMed ID: 34517359 [TBL] [Abstract][Full Text] [Related]
9. A 2.9 GPa Strength Nano-Grained and Nano-Precipitated 304L-Type Austenitic Stainless Steel. Du C; Liu G; Sun B; Xin S; Shen T Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33260803 [TBL] [Abstract][Full Text] [Related]
10. Effect of boron addition on injection molded 316L stainless steel: mechanical, corrosion properties and in vitro bioactivity. Bayraktaroglu E; Gulsoy HO; Gulsoy N; Er O; Kilic H Biomed Mater Eng; 2012; 22(6):333-49. PubMed ID: 23114463 [TBL] [Abstract][Full Text] [Related]
11. Study of biocompatibility of medical grade high nitrogen nickel-free austenitic stainless steel in vitro. Li M; Yin T; Wang Y; Du F; Zou X; Gregersen H; Wang G Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():641-8. PubMed ID: 25175259 [TBL] [Abstract][Full Text] [Related]
12. Nickel-free austenitic stainless steels for medical applications. Yang K; Ren Y Sci Technol Adv Mater; 2010 Feb; 11(1):014105. PubMed ID: 27877320 [TBL] [Abstract][Full Text] [Related]
13. Properties of super stainless steels for orthodontic applications. Oh KT; Kim YS; Park YS; Kim KN J Biomed Mater Res B Appl Biomater; 2004 May; 69(2):183-94. PubMed ID: 15116408 [TBL] [Abstract][Full Text] [Related]
14. The processing of ultrafine-grained Mg tubes for biodegradable stents. Ge Q; Dellasega D; Demir AG; Vedani M Acta Biomater; 2013 Nov; 9(10):8604-10. PubMed ID: 23333440 [TBL] [Abstract][Full Text] [Related]
15. Ensemble Empirical Mode Decomposition based methodology for ultrasonic testing of coarse grain austenitic stainless steels. Sharma GK; Kumar A; Jayakumar T; Purnachandra Rao B; Mariyappa N Ultrasonics; 2015 Mar; 57():167-78. PubMed ID: 25488024 [TBL] [Abstract][Full Text] [Related]
16. Duplex stainless steels for osteosynthesis devices. Cigada A; Rondelli G; Vicentini B; Giacomazzi M; Roos A J Biomed Mater Res; 1989 Sep; 23(9):1087-95. PubMed ID: 2777835 [TBL] [Abstract][Full Text] [Related]
17. Effect of cold working on biocompatibility of Ni-free high nitrogen austenitic stainless steels using Dalton's Lymphoma cell line. Talha M; Kumar S; Behera CK; Sinha OP Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():77-84. PubMed ID: 24411354 [TBL] [Abstract][Full Text] [Related]
18. Comparison of radiation-induced segregation in ultrafine-grained and conventional 316 austenitic stainless steels. Etienne A; Radiguet B; Cunningham NJ; Odette GR; Valiev R; Pareige P Ultramicroscopy; 2011 May; 111(6):659-63. PubMed ID: 21216102 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical and cellular behavior of ultrafine-grained titanium in vitro. Maleki-Ghaleh H; Hajizadeh K; Hadjizadeh A; Shakeri MS; Ghobadi Alamdari S; Masoudfar S; Aghaie E; Javidi M; Zdunek J; Kurzydlowski KJ Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():299-304. PubMed ID: 24863228 [TBL] [Abstract][Full Text] [Related]
20. In vitro corrosion resistance of Lotus-type porous Ni-free stainless steels. Alvarez K; Hyun SK; Fujimoto S; Nakajima H J Mater Sci Mater Med; 2008 Nov; 19(11):3385-97. PubMed ID: 18545945 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]