These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 31617994)

  • 21. Estimation of the Depletion Layer Thickness in Silicon Nanowire-Based Biosensors from Attomolar-Level Biomolecular Detection.
    Zhang H; Qiu Y; Osawa F; Itabashi M; Ohshima N; Kajisa T; Sakata T; Izumi T; Sone H
    ACS Appl Mater Interfaces; 2023 Apr; 15(16):19892-19903. PubMed ID: 37046176
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanoporous Silicon Thin Film-Based Hydrogen Sensor Using Metal-Assisted Chemical Etching with Annealed Palladium Nanoparticles.
    Kim H; Yun J; Gao M; Kim H; Cho M; Park I
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43614-43623. PubMed ID: 32869967
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultralow power consumption gas sensor based on a self-heated nanojunction of SnO
    Ngoc TM; Van Duy N; Hung CM; Hoa ND; Trung NN; Nguyen H; Van Hieu N
    RSC Adv; 2018 Oct; 8(63):36323-36330. PubMed ID: 35558448
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The utilization of SiNWs/AuNPs-modified indium tin oxide (ITO) in fabrication of electrochemical DNA sensor.
    Rashid JI; Yusof NA; Abdullah J; Hashim U; Hajian R
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():270-6. PubMed ID: 25491829
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Localized Liquid-Phase Synthesis of Porous SnO
    Cho I; Kang K; Yang D; Yun J; Park I
    ACS Appl Mater Interfaces; 2017 Aug; 9(32):27111-27119. PubMed ID: 28714311
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High efficiency silicon nanowire/organic hybrid solar cells with two-step surface treatment.
    Wang J; Wang H; Prakoso AB; Togonal AS; Hong L; Jiang C; Rusli
    Nanoscale; 2015 Mar; 7(10):4559-65. PubMed ID: 25686737
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dispersed CuO nanoparticles on a silicon nanowire for improved performance of nonenzymatic H2O2 detection.
    Huang J; Zhu Y; Zhong H; Yang X; Li C
    ACS Appl Mater Interfaces; 2014 May; 6(10):7055-62. PubMed ID: 24831824
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabricating vertically aligned sub-20 nm Si nanowire arrays by chemical etching and thermal oxidation.
    Li L; Fang Y; Xu C; Zhao Y; Zang N; Jiang P; Ziegler KJ
    Nanotechnology; 2016 Apr; 27(16):165303. PubMed ID: 26953775
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulating the density of silicon nanowire arrays for high-performance hydrovoltaic devices.
    Zhang B; Zhang B; Sheng G; Gu C; Yu J; Zhang X
    Nanotechnology; 2024 Feb; 35(18):. PubMed ID: 38271720
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-heated Ag-decorated SnO
    Ngoc TM; Van Duy N; Hung CM; Hoa ND; Nguyen H; Tonezzer M; Van Hieu N
    Anal Chim Acta; 2019 Sep; 1069():108-116. PubMed ID: 31084736
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Catalytically activated palladium@platinum nanowires for accelerated hydrogen gas detection.
    Li X; Liu Y; Hemminger JC; Penner RM
    ACS Nano; 2015 Mar; 9(3):3215-25. PubMed ID: 25679519
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effective decoration of Pd nanoparticles on the surface of SnO2 nanowires for enhancement of CO gas-sensing performance.
    Trung do D; Hoa ND; Tong PV; Duy NV; Dao TD; Chung HV; Nagao T; Hieu NV
    J Hazard Mater; 2014 Jan; 265():124-32. PubMed ID: 24355775
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heat dissipation from suspended self-heated nanowires: gas sensor prospective.
    Zhang J; Strelcov E; Kolmakov A
    Nanotechnology; 2013 Nov; 24(44):444009. PubMed ID: 24113219
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accelerating Palladium Nanowire H
    Koo WT; Qiao S; Ogata AF; Jha G; Jang JS; Chen VT; Kim ID; Penner RM
    ACS Nano; 2017 Sep; 11(9):9276-9285. PubMed ID: 28820935
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-Sensitivity and Low-Power Flexible Schottky Hydrogen Sensor Based on Silicon Nanomembrane.
    Cho M; Yun J; Kwon D; Kim K; Park I
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12870-12877. PubMed ID: 29578325
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pixel-based biosensor for enhanced control: silicon nanowires monolithically integrated with field-effect transistors in fully depleted silicon on insulator technology.
    Jayakumar G; Östling M
    Nanotechnology; 2019 May; 30(22):225502. PubMed ID: 30721898
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fast-Response and Low-Power Self-Heating Gas Sensor Using Metal/Metal Oxide/Metal (MMOM) Structured Nanowires.
    Jo MS; Kim SH; Park SY; Choi KW; Kim SH; Yoo JY; Kim BJ; Yoon JB
    ACS Sens; 2024 Apr; 9(4):1896-1905. PubMed ID: 38626402
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Individual Pd nanowire hydrogen sensors fabricated by electron-beam lithography.
    Jeon KJ; Lee JM; Lee E; Lee W
    Nanotechnology; 2009 Apr; 20(13):135502. PubMed ID: 19420501
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Array density effect on the optical and photoelectric properties of silicon nanowire arrays via Ag-assisted chemical etching.
    Chen H; Shi Y; Qin J; Sheng G; Zhang C; Zhang B; Zhang X
    Nanotechnology; 2023 Jul; 34(40):. PubMed ID: 37399796
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sub-6 nm Palladium Nanoparticles for Faster, More Sensitive H
    Li X; Le Thai M; Dutta RK; Qiao S; Chandran GT; Penner RM
    ACS Sens; 2017 Feb; 2(2):282-289. PubMed ID: 28723148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.