These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
311 related articles for article (PubMed ID: 31618004)
1. Big Data Challenges Targeting Proteins in GPCR Signaling Pathways; Combining PTML-ChEMBL Models and [ Diez-Alarcia R; Yáñez-Pérez V; Muneta-Arrate I; Arrasate S; Lete E; Meana JJ; González-Díaz H ACS Chem Neurosci; 2019 Nov; 10(11):4476-4491. PubMed ID: 31618004 [TBL] [Abstract][Full Text] [Related]
2. Perturbation Theory/Machine Learning Model of ChEMBL Data for Dopamine Targets: Docking, Synthesis, and Assay of New l-Prolyl-l-leucyl-glycinamide Peptidomimetics. Ferreira da Costa J; Silva D; Caamaño O; Brea JM; Loza MI; Munteanu CR; Pazos A; García-Mera X; González-Díaz H ACS Chem Neurosci; 2018 Nov; 9(11):2572-2587. PubMed ID: 29791132 [TBL] [Abstract][Full Text] [Related]
3. PTML Combinatorial Model of ChEMBL Compounds Assays for Multiple Types of Cancer. Bediaga H; Arrasate S; González-Díaz H ACS Comb Sci; 2018 Nov; 20(11):621-632. PubMed ID: 30240186 [TBL] [Abstract][Full Text] [Related]
4. Multioutput Perturbation-Theory Machine Learning (PTML) Model of ChEMBL Data for Antiretroviral Compounds. Vásquez-Domínguez E; Armijos-Jaramillo VD; Tejera E; González-Díaz H Mol Pharm; 2019 Oct; 16(10):4200-4212. PubMed ID: 31426639 [TBL] [Abstract][Full Text] [Related]
5. PTML Model for Selection of Nanoparticles, Anticancer Drugs, and Vitamins in the Design of Drug-Vitamin Nanoparticle Release Systems for Cancer Cotherapy. Santana R; Zuluaga R; Gañán P; Arrasate S; Onieva E; Montemore MM; González-Díaz H Mol Pharm; 2020 Jul; 17(7):2612-2627. PubMed ID: 32459098 [TBL] [Abstract][Full Text] [Related]
6. 5-HT-stimulated [35S]guanosine-5'-O-(3-thio)triphosphate binding as an assay for functional activation of G proteins coupled with 5-HT1B receptors in rat striatal membranes. Odagaki Y; Toyoshima R Naunyn Schmiedebergs Arch Pharmacol; 2006 Feb; 372(5):335-45. PubMed ID: 16491386 [TBL] [Abstract][Full Text] [Related]
7. Use of the GTPγS ([35S]GTPγS and Eu-GTPγS) binding assay for analysis of ligand potency and efficacy at G protein-coupled receptors. Strange PG Br J Pharmacol; 2010 Nov; 161(6):1238-49. PubMed ID: 20662841 [TBL] [Abstract][Full Text] [Related]
8. Agonist and antagonist actions of antipsychotic agents at 5-HT1A receptors: a [35S]GTPgammaS binding study. Newman-Tancredi A; Gavaudan S; Conte C; Chaput C; Touzard M; Verrièle L; Audinot V; Millan MJ Eur J Pharmacol; 1998 Aug; 355(2-3):245-56. PubMed ID: 9760039 [TBL] [Abstract][Full Text] [Related]
9. PTML Model of ChEMBL Compounds Assays for Vitamin Derivatives. Santana R; Zuluaga R; Gañán P; Arrasate S; Onieva Caracuel E; González-Díaz H ACS Comb Sci; 2020 Mar; 22(3):129-141. PubMed ID: 32011854 [TBL] [Abstract][Full Text] [Related]
10. [35S]GTPgammaS binding in G protein-coupled receptor assays. Cooper T; McMurchie EJ; Leifert WR Methods Mol Biol; 2009; 552():143-51. PubMed ID: 19513647 [TBL] [Abstract][Full Text] [Related]
11. The [35S]GTPgammaS binding assay: approaches and applications in pharmacology. Harrison C; Traynor JR Life Sci; 2003 Dec; 74(4):489-508. PubMed ID: 14609727 [TBL] [Abstract][Full Text] [Related]
12. Comparative analysis of functional assays for characterization of agonist ligands at G protein-coupled receptors. Niedernberg A; Tunaru S; Blaukat A; Harris B; Kostenis E J Biomol Screen; 2003 Oct; 8(5):500-10. PubMed ID: 14567777 [TBL] [Abstract][Full Text] [Related]
13. Functional approaches to the study of G-protein-coupled receptors in postmortem brain tissue: [ Diez-Alarcia R; Odagaki Y; Miranda-Azpiazu P; Gabilondo AM; Meana JJ; Muneta-Arrate I Pharmacol Rep; 2021 Aug; 73(4):1079-1095. PubMed ID: 33876404 [TBL] [Abstract][Full Text] [Related]
14. The putative <> 5-HT(1A) receptor antagonist, WAY 100635, has inverse agonist properties at cloned human 5-HT(1A) receptors. Cosi C; Koek W Eur J Pharmacol; 2000 Jul; 401(1):9-15. PubMed ID: 10915831 [TBL] [Abstract][Full Text] [Related]
15. Assay of GTPγS Binding in Autoradiography. Gabaglio M; Prini P; Zamberletti E; Rubino T; Parolaro D Methods Mol Biol; 2023; 2576():181-188. PubMed ID: 36152186 [TBL] [Abstract][Full Text] [Related]
16. A robust and high-capacity [(35)S]GTPgammaS binding assay for determining antagonist and inverse agonist pharmacological parameters of histamine H(3) receptor ligands. Miller TR; Baranowski JL; Estvander BR; Witte DG; Carr TL; Manelli AM; Krueger KM; Cowart MD; Brioni JD; Esbenshade TA Assay Drug Dev Technol; 2008 Jun; 6(3):339-49. PubMed ID: 18593375 [TBL] [Abstract][Full Text] [Related]
17. Designing nanoparticle release systems for drug-vitamin cancer co-therapy with multiplicative perturbation-theory machine learning (PTML) models. Santana R; Zuluaga R; Gañán P; Arrasate S; Onieva E; González-Díaz H Nanoscale; 2019 Nov; 11(45):21811-21823. PubMed ID: 31691701 [TBL] [Abstract][Full Text] [Related]
18. A fully automated [35S]GTPgammaS scintillation proximity assay for the high-throughput screening of Gi-linked G protein-coupled receptors. Ferrer M; Kolodin GD; Zuck P; Peltier R; Berry K; Mandala SM; Rosen H; Ota H; Ozaki S; Inglese J; Strulovici B Assay Drug Dev Technol; 2003 Apr; 1(2):261-73. PubMed ID: 15090191 [TBL] [Abstract][Full Text] [Related]
19. [35S]Guanosine-5'-O-(3-thio)triphosphate binding as a measure of efficacy at human recombinant dopamine D4.4 receptors: actions of antiparkinsonian and antipsychotic agents. Newman-Tancredi A; Audinot V; Chaput C; Verrièle L; Millan MJ J Pharmacol Exp Ther; 1997 Jul; 282(1):181-91. PubMed ID: 9223553 [TBL] [Abstract][Full Text] [Related]
20. Selective heterologous regulation of 5-HT1A receptor-stimulated 35S GTPgammaS binding in the anterior cingulate cortex as a result of 5-HT2 receptor activation. Valdez M; Burke TF; Hensler JG Brain Res; 2002 Dec; 957(1):174-82. PubMed ID: 12443993 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]