BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 31618078)

  • 1. The load dependence and the force-velocity relation in intact myosin filaments from skeletal and smooth muscles.
    Cheng YS; de Souza Leite F; Rassier DE
    Am J Physiol Cell Physiol; 2020 Jan; 318(1):C103-C110. PubMed ID: 31618078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forces measured with micro-fabricated cantilevers during actomyosin interactions produced by filaments containing different myosin isoforms and loop 1 structures.
    Kalganov A; Shalabi N; Zitouni N; Kachmar LH; Lauzon AM; Rassier DE
    Biochim Biophys Acta; 2013 Mar; 1830(3):2710-9. PubMed ID: 23671932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Force-velocity relation of sliding of skeletal muscle myosin, arranged on a paramyosin filament, on actin cables.
    Tameyasu T; Akimoto T; Hirohata Y; Shirakawa I; Yamamoto N; Kosuge S; Sugi H
    Jpn J Physiol; 1998 Apr; 48(2):115-21. PubMed ID: 9639546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The kinetics underlying the velocity of smooth muscle myosin filament sliding on actin filaments in vitro.
    Haldeman BD; Brizendine RK; Facemyer KC; Baker JE; Cremo CR
    J Biol Chem; 2014 Jul; 289(30):21055-70. PubMed ID: 24907276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thin-filament linked regulation of smooth muscle myosin.
    Haeberle JR
    J Muscle Res Cell Motil; 1999 May; 20(4):363-70. PubMed ID: 10531617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smooth muscle myosin cross-bridge interactions modulate actin filament sliding velocity in vitro.
    Warshaw DM; Desrosiers JM; Work SS; Trybus KM
    J Cell Biol; 1990 Aug; 111(2):453-63. PubMed ID: 2143195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actin sliding on reconstituted myosin filaments containing only one myosin heavy chain isoform.
    Scholz T; Brenner B
    J Muscle Res Cell Motil; 2003; 24(1):77-86. PubMed ID: 12953838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myosin filament polymerization and depolymerization in a model of partial length adaptation in airway smooth muscle.
    Ijpma G; Al-Jumaily AM; Cairns SP; Sieck GC
    J Appl Physiol (1985); 2011 Sep; 111(3):735-42. PubMed ID: 21659490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forces measured with micro-fabricated cantilevers during actomyosin interactions produced by filaments containing different myosin isoforms and loop 1 structures.
    Kalganov A; Shalabi N; Zitouni N; Kachmar LH; Lauzon AM; Rassier DE
    Biochim Biophys Acta; 2013 Mar; 1830(3):2710-2719. PubMed ID: 23220701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sliding distance of actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle.
    Yanagida T; Arata T; Oosawa F
    Nature; 1985 Jul 25-31; 316(6026):366-9. PubMed ID: 4022127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation alters myosin-actin interaction and force generation in skeletal muscle filaments.
    Elkrief D; Cheng YS; Matusovsky OS; Rassier DE
    Am J Physiol Cell Physiol; 2022 Oct; 323(4):C1206-C1214. PubMed ID: 36062880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myosin motors fragment and compact membrane-bound actin filaments.
    Vogel SK; Petrasek Z; Heinemann F; Schwille P
    Elife; 2013 Jan; 2():e00116. PubMed ID: 23326639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of the sliding velocity of actin filaments in the presence of ATP analogue: AMP-PNP.
    Sakamaki J; Honda H; Imai E; Hatori K; Shimada K; Matsuno K
    Biophys Chem; 2003 Aug; 105(1):59-66. PubMed ID: 12932579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural characterization of the binding of Myosin*ADP*Pi to actin in permeabilized rabbit psoas muscle.
    Xu S; Gu J; Belknap B; White H; Yu LC
    Biophys J; 2006 Nov; 91(9):3370-82. PubMed ID: 16905611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of in vitro motility assays using smooth muscle and cytoplasmic myosins.
    Umemoto S; Sellers JR
    J Biol Chem; 1990 Sep; 265(25):14864-9. PubMed ID: 2394702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smooth, cardiac and skeletal muscle myosin force and motion generation assessed by cross-bridge mechanical interactions in vitro.
    Harris DE; Work SS; Wright RK; Alpert NR; Warshaw DM
    J Muscle Res Cell Motil; 1994 Feb; 15(1):11-9. PubMed ID: 8182105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sliding movements of molluscan and algal myosin attached to a magnetizable bead under a load controlled by electromagnet.
    Watari T; Kumakiri K; Ono A; Ishii Y; Itoh H; Huang Z; Tsuchiya T
    J Physiol Sci; 2006 Feb; 56(1):13-20. PubMed ID: 16779909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of muscle force in the absence of actin-myosin-based cross-bridge interaction.
    Leonard TR; Herzog W
    Am J Physiol Cell Physiol; 2010 Jul; 299(1):C14-20. PubMed ID: 20357181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smooth muscle and skeletal muscle myosins produce similar unitary forces and displacements in the laser trap.
    Guilford WH; Dupuis DE; Kennedy G; Wu J; Patlak JB; Warshaw DM
    Biophys J; 1997 Mar; 72(3):1006-21. PubMed ID: 9138552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of force generated by individual myosin heads in skinned rabbit psoas muscle fibers at low ionic strength.
    Sugi H; Abe T; Kobayashi T; Chaen S; Ohnuki Y; Saeki Y; Sugiura S
    PLoS One; 2013; 8(5):e63658. PubMed ID: 23691080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.