These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 31618103)

  • 1. Neural and muscular determinants of maximal rate of force development.
    Dideriksen JL; Del Vecchio A; Farina D
    J Neurophysiol; 2020 Jan; 123(1):149-157. PubMed ID: 31618103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fine-wire recordings of flexor hallucis brevis motor units up to maximal voluntary contraction reveal a flexible, nonrigid mechanism for force control.
    Aeles J; Kelly LA; Yoshitake Y; Cresswell AG
    J Neurophysiol; 2020 May; 123(5):1766-1774. PubMed ID: 32267195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor unit recruitment strategies and muscle properties determine the influence of synaptic noise on force steadiness.
    Dideriksen JL; Negro F; Enoka RM; Farina D
    J Neurophysiol; 2012 Jun; 107(12):3357-69. PubMed ID: 22423000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-related changes in firing rates are influenced by recruitment threshold and twitch force potentiation in the first dorsal interosseous.
    Miller JD; Herda TJ; Trevino MA; Sterczala AJ; Ciccone AB
    Exp Physiol; 2017 Aug; 102(8):950-961. PubMed ID: 28544046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The increase in muscle force after 4 weeks of strength training is mediated by adaptations in motor unit recruitment and rate coding.
    Del Vecchio A; Casolo A; Negro F; Scorcelletti M; Bazzucchi I; Enoka R; Felici F; Farina D
    J Physiol; 2019 Apr; 597(7):1873-1887. PubMed ID: 30727028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptations in motor unit properties underlying changes in recruitment, rate coding, and maximum force.
    Dideriksen J; Del Vecchio A
    J Neurophysiol; 2023 Jan; 129(1):235-246. PubMed ID: 36515411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lack of increased rate of force development after strength training is explained by specific neural, not muscular, motor unit adaptations.
    Del Vecchio A; Casolo A; Dideriksen JL; Aagaard P; Felici F; Falla D; Farina D
    J Appl Physiol (1985); 2022 Jan; 132(1):84-94. PubMed ID: 34792405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. You are as fast as your motor neurons: speed of recruitment and maximal discharge of motor neurons determine the maximal rate of force development in humans.
    Del Vecchio A; Negro F; Holobar A; Casolo A; Folland JP; Felici F; Farina D
    J Physiol; 2019 May; 597(9):2445-2456. PubMed ID: 30768687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor unit recruitment in human biceps brachii during sustained voluntary contractions.
    Riley ZA; Maerz AH; Litsey JC; Enoka RM
    J Physiol; 2008 Apr; 586(8):2183-93. PubMed ID: 18292128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discharge rate variability influences the variation in force fluctuations across the working range of a hand muscle.
    Moritz CT; Barry BK; Pascoe MA; Enoka RM
    J Neurophysiol; 2005 May; 93(5):2449-59. PubMed ID: 15615827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Models of recruitment and rate coding organization in motor-unit pools.
    Fuglevand AJ; Winter DA; Patla AE
    J Neurophysiol; 1993 Dec; 70(6):2470-88. PubMed ID: 8120594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor unit control properties in constant-force isometric contractions.
    de Luca CJ; Foley PJ; Erim Z
    J Neurophysiol; 1996 Sep; 76(3):1503-16. PubMed ID: 8890270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motor-unit synchronization alters spike-triggered average force in simulated contractions.
    Taylor AM; Steege JW; Enoka RM
    J Neurophysiol; 2002 Jul; 88(1):265-76. PubMed ID: 12091552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contractile properties of single motor units in human toe extensors assessed by intraneural motor axon stimulation.
    Macefield VG; Fuglevand AJ; Bigland-Ritchie B
    J Neurophysiol; 1996 Jun; 75(6):2509-19. PubMed ID: 8793760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterising sex-related differences in lower- and higher-threshold motor unit behaviour through high-density surface electromyography.
    Lecce E; Conti A; Nuccio S; Felici F; Bazzucchi I
    Exp Physiol; 2024 Aug; 109(8):1317-1329. PubMed ID: 38888901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexor hallucis brevis motor unit behavior in response to moderate increases in rate of force development.
    Aeles J; Kelly LA; Cresswell AG
    PeerJ; 2023; 11():e14341. PubMed ID: 36643633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spike-triggered averaging provides inaccurate estimates of motor unit twitch properties under optimal conditions.
    Dideriksen JL; Negro F
    J Electromyogr Kinesiol; 2018 Dec; 43():104-110. PubMed ID: 30267966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavior of motor units in human biceps brachii during a submaximal fatiguing contraction.
    Garland SJ; Enoka RM; Serrano LP; Robinson GA
    J Appl Physiol (1985); 1994 Jun; 76(6):2411-9. PubMed ID: 7928865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recruitment of triceps surae motor units in the decerebrate cat. II. Heterogeneity among soleus motor units.
    Sokoloff AJ; Cope TC
    J Neurophysiol; 1996 May; 75(5):2005-16. PubMed ID: 8734599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pattern of pulses that maximize force output from single human thenar motor units.
    Thomas CK; Johansson RS; Bigland-Ritchie B
    J Neurophysiol; 1999 Dec; 82(6):3188-95. PubMed ID: 10601452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.