These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31618459)

  • 1. The Membrane-Integrated Steric Chaperone Lif Facilitates Active Site Opening of Pseudomonas aeruginosa Lipase A.
    Verma N; Dollinger P; Kovacic F; Jaeger KE; Gohlke H
    J Comput Chem; 2020 Mar; 41(6):500-512. PubMed ID: 31618459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and dynamic insights revealing how lipase binding domain MD1 of Pseudomonas aeruginosa foldase affects lipase activation.
    Viegas A; Dollinger P; Verma N; Kubiak J; Viennet T; Seidel CAM; Gohlke H; Etzkorn M; Kovacic F; Jaeger KE
    Sci Rep; 2020 Feb; 10(1):3578. PubMed ID: 32107397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the lipase-specific foldase of Burkholderia glumae as a steric chaperone.
    El Khattabi M; Van Gelder P; Bitter W; Tommassen J
    J Biol Chem; 2000 Sep; 275(35):26885-91. PubMed ID: 10859310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disulfide bond in Pseudomonas aeruginosa lipase stabilizes the structure but is not required for interaction with its foldase.
    Liebeton K; Zacharias A; Jaeger KE
    J Bacteriol; 2001 Jan; 183(2):597-603. PubMed ID: 11133953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specificity of the lipase-specific foldases of gram-negative bacteria and the role of the membrane anchor.
    El Khattabi M; Ockhuijsen C; Bitter W; Jaeger KE; Tommassen J
    Mol Gen Genet; 1999 Jun; 261(4-5):770-6. PubMed ID: 10394914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of a membrane-based steric chaperone in complex with its lipase substrate.
    Pauwels K; Lustig A; Wyns L; Tommassen J; Savvides SN; Van Gelder P
    Nat Struct Mol Biol; 2006 Apr; 13(4):374-5. PubMed ID: 16518399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-expression of an organic solvent-tolerant lipase and its cognate foldase of Pseudomonas aeruginosa CS-2 and the application of the immobilized recombinant lipase.
    Peng R; Lin J; Wei D
    Appl Biochem Biotechnol; 2011 Oct; 165(3-4):926-37. PubMed ID: 21720839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional cell-surface display of a lipase-specific chaperone.
    Wilhelm S; Rosenau F; Becker S; Buest S; Hausmann S; Kolmar H; Jaeger KE
    Chembiochem; 2007 Jan; 8(1):55-60. PubMed ID: 17173269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding domain movements and interactions of Pseudomonas aeruginosa lipase with lipid molecule tristearoyl glycerol: A molecular dynamics approach.
    Thiruvengadam K; Baskaran SK; Pennathur G
    J Mol Graph Model; 2018 Oct; 85():190-197. PubMed ID: 30227364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoding the folding of Burkholderia glumae lipase: folding intermediates en route to kinetic stability.
    Pauwels K; Sanchez del Pino MM; Feller G; Van Gelder P
    PLoS One; 2012; 7(5):e36999. PubMed ID: 22615867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial lipases from Pseudomonas: regulation of gene expression and mechanisms of secretion.
    Rosenau F; Jaeger K
    Biochimie; 2000 Nov; 82(11):1023-32. PubMed ID: 11099799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional Heterologous Expression of Mature Lipase LipA from
    Pulido IY; Prieto E; Pieffet GP; Méndez L; Jiménez-Junca CA
    Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32486240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-terminal transmembrane domain of lipase LipA from Pseudomonas protegens Pf-5: A must for its efficient folding into an active conformation.
    Zha D; Zhang H; Zhang H; Xu L; Yan Y
    Biochimie; 2014 Oct; 105():165-71. PubMed ID: 25038570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-expression of the lipase and foldase of Pseudomonas aeruginosa to a functional lipase in Escherichia coli.
    Madan B; Mishra P
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):597-604. PubMed ID: 19629472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence of a double-lid movement in Pseudomonas aeruginosa lipase: insights from molecular dynamics simulations.
    Cherukuvada SL; Seshasayee AS; Raghunathan K; Anishetty S; Pennathur G
    PLoS Comput Biol; 2005 Aug; 1(3):e28. PubMed ID: 16110344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial lipases.
    Jaeger KE; Ransac S; Dijkstra BW; Colson C; van Heuvel M; Misset O
    FEMS Microbiol Rev; 1994 Sep; 15(1):29-63. PubMed ID: 7946464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational reverse engineering of the lipase from Pseudomonas aeruginosa PAO1: α-helices.
    Elatico AJJ; Nellas RB
    J Mol Graph Model; 2020 Nov; 100():107657. PubMed ID: 32712552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent-dependent gating motions of an extremophilic lipase from Pseudomonas aeruginosa.
    Johnson QR; Nellas RB; Shen T
    Biochemistry; 2012 Aug; 51(31):6238-45. PubMed ID: 22830585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyper-activation of foldase-dependent lipase with lipase-specific foldase.
    Ogino H; Inoue S; Yasuda M; Doukyu N
    J Biotechnol; 2013 Jun; 166(1-2):20-4. PubMed ID: 23669194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lid closure dynamics of porcine pancreatic lipase in aqueous solution.
    Haque N; Prabhu NP
    Biochim Biophys Acta; 2016 Oct; 1860(10):2313-25. PubMed ID: 27155582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.