These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 31618489)

  • 1. 3D-Printed Phenacrylate Decarboxylase Flow Reactors for the Chemoenzymatic Synthesis of 4-Hydroxystilbene.
    Peng M; Mittmann E; Wenger L; Hubbuch J; Engqvist MKM; Niemeyer CM; Rabe KS
    Chemistry; 2019 Dec; 25(70):15998-16001. PubMed ID: 31618489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advantages of Hydrogel-Based 3D-Printed Enzyme Reactors and Their Limitations for Biocatalysis.
    Schmieg B; Döbber J; Kirschhöfer F; Pohl M; Franzreb M
    Front Bioeng Biotechnol; 2018; 6():211. PubMed ID: 30693280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-Demand Production of Flow-Reactor Cartridges by 3D Printing of Thermostable Enzymes.
    Maier M; Radtke CP; Hubbuch J; Niemeyer CM; Rabe KS
    Angew Chem Int Ed Engl; 2018 May; 57(19):5539-5543. PubMed ID: 29466613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous Flow Biocatalytic Reductive Amination by Co-Entrapping Dehydrogenases with Agarose Gel in a 3D-Printed Mould Reactor.
    Croci F; Vilím J; Adamopoulou T; Tseliou V; Schoenmakers PJ; Knaus T; Mutti FG
    Chembiochem; 2022 Nov; 23(22):e202200549. PubMed ID: 36173971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic evaluation of agarose- and agar-based bioinks for extrusion-based bioprinting of enzymatically active hydrogels.
    Wenger L; Radtke CP; Gerisch E; Kollmann M; Niemeyer CM; Rabe KS; Hubbuch J
    Front Bioeng Biotechnol; 2022; 10():928878. PubMed ID: 36479432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printed ceramics as solid supports for enzyme immobilization: an automated DoE approach for applications in continuous flow.
    Valotta A; Maier MC; Soritz S; Pauritsch M; Koenig M; Brouczek D; Schwentenwein M; Gruber-Woelfler H
    J Flow Chem; 2021; 11(3):675-689. PubMed ID: 34745652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Developments and Applications of Biocatalytic and Chemoenzymatic Synthesis for the Generation of Diverse Classes of Drugs.
    Verma S; Paliwal S
    Curr Pharm Biotechnol; 2024; 25(4):448-467. PubMed ID: 37885105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-Printable and Enzymatically Active Composite Materials Based on Hydrogel-Filled High Internal Phase Emulsions.
    Wenger L; Radtke CP; Göpper J; Wörner M; Hubbuch J
    Front Bioeng Biotechnol; 2020; 8():713. PubMed ID: 32850688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in 3D Gel Printing for Enzyme Immobilization.
    Shen J; Zhang S; Fang X; Salmon S
    Gels; 2022 Jul; 8(8):. PubMed ID: 35892719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printing: An Emerging Technology for Biocatalyst Immobilization.
    Pose-Boirazian T; Martínez-Costas J; Eibes G
    Macromol Biosci; 2022 Sep; 22(9):e2200110. PubMed ID: 35579179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Valency engineering of monomeric enzymes for self-assembling biocatalytic hydrogels.
    Bitterwolf P; Gallus S; Peschke T; Mittmann E; Oelschlaeger C; Willenbacher N; Rabe KS; Niemeyer CM
    Chem Sci; 2019 Nov; 10(42):9752-9757. PubMed ID: 32055344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Assembling All-Enzyme Hydrogels for Flow Biocatalysis.
    Peschke T; Bitterwolf P; Gallus S; Hu Y; Oelschlaeger C; Willenbacher N; Rabe KS; Niemeyer CM
    Angew Chem Int Ed Engl; 2018 Dec; 57(52):17028-17032. PubMed ID: 30380178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocatalytic Foams from Microdroplet-Formulated Self-Assembling Enzymes.
    Hertel JS; Bitterwolf P; Kröll S; Winterhalter A; Weber AJ; Grösche M; Walkowsky LB; Heißler S; Schwotzer M; Wöll C; van de Kamp T; Zuber M; Baumbach T; Rabe KS; Niemeyer CM
    Adv Mater; 2023 Sep; 35(39):e2303952. PubMed ID: 37358068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilization of thermophilic enzymes in miniaturized flow reactors.
    Hickey AM; Marle L; McCreedy T; Watts P; Greenway GM; Littlechild JA
    Biochem Soc Trans; 2007 Dec; 35(Pt 6):1621-3. PubMed ID: 18031278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demystifying the Flow: Biocatalytic Reaction Intensification in Microstructured Enzyme Reactors.
    Bolivar JM; Valikhani D; Nidetzky B
    Biotechnol J; 2019 Mar; 14(3):e1800244. PubMed ID: 30091533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaching New Biocatalytic Reactivity Using Continuous Flow Reactors.
    Cosgrove SC; Mattey AP
    Chemistry; 2022 Mar; 28(13):e202103607. PubMed ID: 34882844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of 3D Printed Enzymatic Microreactors for Lipase-Catalyzed Reactions in Deep Eutectic Solvent-Based Media.
    Bellou MG; Gkantzou E; Skonta A; Moschovas D; Spyrou K; Avgeropoulos A; Gournis D; Stamatis H
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36422383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocatalysis in Continuous-Flow Microfluidic Reactors.
    Cardoso Marques MP; Lorente-Arevalo A; Bolivar JM
    Adv Biochem Eng Biotechnol; 2022; 179():211-246. PubMed ID: 33624135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Trends in Enzyme Immobilization-Concepts for Expanding the Biocatalysis Toolbox.
    Federsel HJ; Moody TS; Taylor SJC
    Molecules; 2021 May; 26(9):. PubMed ID: 34068706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covalent organic frameworks as emerging host platforms for enzyme immobilization and robust biocatalysis - A review.
    Gan J; Bagheri AR; Aramesh N; Gul I; Franco M; Almulaiky YQ; Bilal M
    Int J Biol Macromol; 2021 Jan; 167():502-515. PubMed ID: 33279559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.