These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 31618634)

  • 1. Optomotor Swimming in Larval Zebrafish Is Driven by Global Whole-Field Visual Motion and Local Light-Dark Transitions.
    Kist AM; Portugues R
    Cell Rep; 2019 Oct; 29(3):659-670.e3. PubMed ID: 31618634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of motion aftereffect on optomotor response in larva and adult zebrafish.
    Najafian M; Alerasool N; Moshtaghian J
    Neurosci Lett; 2014 Jan; 559():179-83. PubMed ID: 23792197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatio-temporal frequency characteristics of the optomotor response in zebrafish.
    Maaswinkel H; Li L
    Vision Res; 2003 Jan; 43(1):21-30. PubMed ID: 12505601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perception of Fourier and non-Fourier motion by larval zebrafish.
    Orger MB; Smear MC; Anstis SM; Baier H
    Nat Neurosci; 2000 Nov; 3(11):1128-33. PubMed ID: 11036270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A behavioral and modeling study of control algorithms underlying the translational optomotor response in larval zebrafish with implications for neural circuit function.
    Holman JG; Lai WWK; Pichler P; Saska D; Lagnado L; Buckley CL
    PLoS Comput Biol; 2023 Feb; 19(2):e1010924. PubMed ID: 36821587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-field visual motion drives swimming in larval zebrafish via a stochastic process.
    Portugues R; Haesemeyer M; Blum ML; Engert F
    J Exp Biol; 2015 May; 218(Pt 9):1433-43. PubMed ID: 25792753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses of cerebellar Purkinje cells during fictive optomotor behavior in larval zebrafish.
    Scalise K; Shimizu T; Hibi M; Sawtell NB
    J Neurophysiol; 2016 Nov; 116(5):2067-2080. PubMed ID: 27512018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The optomotor response of aging zebrafish reveals a complex relationship between visual motion characteristics and cholinergic system.
    Karaduman A; Karoglu-Eravsar ET; Kaya U; Aydin A; Adams MM; Kafaligonul H
    Neurobiol Aging; 2021 Feb; 98():21-32. PubMed ID: 33227566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visuomotor behaviors in larval zebrafish after GFP-guided laser ablation of the optic tectum.
    Roeser T; Baier H
    J Neurosci; 2003 May; 23(9):3726-34. PubMed ID: 12736343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional architecture of an optic flow-responsive area that drives horizontal eye movements in zebrafish.
    Kubo F; Hablitzel B; Dal Maschio M; Driever W; Baier H; Arrenberg AB
    Neuron; 2014 Mar; 81(6):1344-1359. PubMed ID: 24656253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Neural Representation of Naturalistic Motion-Guided Behavior in the Zebrafish Brain.
    Yildizoglu T; Riegler C; Fitzgerald JE; Portugues R
    Curr Biol; 2020 Jun; 30(12):2321-2333.e6. PubMed ID: 32386533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallel Channels for Motion Feature Extraction in the Pretectum and Tectum of Larval Zebrafish.
    Wang K; Hinz J; Zhang Y; Thiele TR; Arrenberg AB
    Cell Rep; 2020 Jan; 30(2):442-453.e6. PubMed ID: 31940488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish.
    Oteiza P; Odstrcil I; Lauder G; Portugues R; Engert F
    Nature; 2017 Jul; 547(7664):445-448. PubMed ID: 28700578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PCB1254 exposure contributes to the abnormalities of optomotor responses and influence of the photoreceptor cell development in zebrafish larvae.
    Zhang X; Hong Q; Yang L; Zhang M; Guo X; Chi X; Tong M
    Ecotoxicol Environ Saf; 2015 Aug; 118():133-138. PubMed ID: 25938693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From Whole-Brain Data to Functional Circuit Models: The Zebrafish Optomotor Response.
    Naumann EA; Fitzgerald JE; Dunn TW; Rihel J; Sompolinsky H; Engert F
    Cell; 2016 Nov; 167(4):947-960.e20. PubMed ID: 27814522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustained Rhythmic Brain Activity Underlies Visual Motion Perception in Zebrafish.
    Pérez-Schuster V; Kulkarni A; Nouvian M; Romano SA; Lygdas K; Jouary A; Dipoppa M; Pietri T; Haudrechy M; Candat V; Boulanger-Weill J; Hakim V; Sumbre G
    Cell Rep; 2016 Oct; 17(4):1098-1112. PubMed ID: 27760314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a larval fathead minnow optomotor response assay for assessing visual function.
    Krzykwa JC; Jeffries MK
    MethodsX; 2020; 7():100971. PubMed ID: 32642453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A robust receptive field code for optic flow detection and decomposition during self-motion.
    Zhang Y; Huang R; Nörenberg W; Arrenberg AB
    Curr Biol; 2022 Jun; 32(11):2505-2516.e8. PubMed ID: 35550724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experience-dependent development of visual sensitivity in larval zebrafish.
    Xie J; Jusuf PR; Bui BV; Goodbourn PT
    Sci Rep; 2019 Dec; 9(1):18931. PubMed ID: 31831839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Passive exposure to visual motion leads to short-term changes in the optomotor response of aging zebrafish.
    Karaduman A; Karoglu-Eravsar ET; Adams MM; Kafaligonul H
    Behav Brain Res; 2024 Mar; 460():114812. PubMed ID: 38104637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.