These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 31618669)
1. Transcriptomic analysis on the promoter regions discover gene networks involving mastitis in cattle. Gorji AE; Roudbari Z; Sadeghi B; Javadmanesh A; Sadkowski T Microb Pathog; 2019 Dec; 137():103801. PubMed ID: 31618669 [TBL] [Abstract][Full Text] [Related]
2. Predicting distinct organization of transcription factor binding sites on the promoter regions: a new genome-based approach to expand human embryonic stem cell regulatory network. Hosseinpour B; Bakhtiarizadeh MR; Khosravi P; Ebrahimie E Gene; 2013 Dec; 531(2):212-9. PubMed ID: 24042128 [TBL] [Abstract][Full Text] [Related]
3. Genome-wide methylation and transcriptome of blood neutrophils reveal the roles of DNA methylation in affecting transcription of protein-coding genes and miRNAs in E. coli-infected mastitis cows. Ju Z; Jiang Q; Wang J; Wang X; Yang C; Sun Y; Zhang Y; Wang C; Gao Y; Wei X; Hou M; Huang J BMC Genomics; 2020 Jan; 21(1):102. PubMed ID: 32000686 [TBL] [Abstract][Full Text] [Related]
4. Whole-genome regulation analysis of histone H3 lysin 27 trimethylation in subclinical mastitis cows infected by Staphylococcus aureus. He Y; Song M; Zhang Y; Li X; Song J; Zhang Y; Yu Y BMC Genomics; 2016 Aug; 17():565. PubMed ID: 27503467 [TBL] [Abstract][Full Text] [Related]
5. Going further post-RNA-seq: Passe Pereira H; Lima Verardo L; Morena Del Cambre Amaral Weller M; Paula Sbardella A; Prado Munari D; Morais de Paiva Daibert R; Araújo Carvalho W; Antonio Machado M; Fonseca Martins M J Dairy Res; 2021 Aug; 88(3):286-292. PubMed ID: 34372953 [TBL] [Abstract][Full Text] [Related]
6. Integration of machine learning and meta-analysis identifies the transcriptomic bio-signature of mastitis disease in cattle. Sharifi S; Pakdel A; Ebrahimi M; Reecy JM; Fazeli Farsani S; Ebrahimie E PLoS One; 2018; 13(2):e0191227. PubMed ID: 29470489 [TBL] [Abstract][Full Text] [Related]
7. Prediction of key regulators and downstream targets of E. coli induced mastitis. Sharifi S; Pakdel A; Ebrahimie E; Aryan Y; Ghaderi Zefrehee M; Reecy JM J Appl Genet; 2019 Nov; 60(3-4):367-373. PubMed ID: 31187384 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome profiling of Streptococcus uberis-induced mastitis reveals fundamental differences between immune gene expression in the mammary gland and in a primary cell culture model. Swanson KM; Stelwagen K; Dobson J; Henderson HV; Davis SR; Farr VC; Singh K J Dairy Sci; 2009 Jan; 92(1):117-29. PubMed ID: 19109270 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide prediction of transcriptional regulatory elements of human promoters using gene expression and promoter analysis data. Kim SY; Kim Y BMC Bioinformatics; 2006 Jul; 7():330. PubMed ID: 16817975 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome profiling of Staphylococci-infected cow mammary gland parenchyma. Kosciuczuk EM; Lisowski P; Jarczak J; Majewska A; Rzewuska M; Zwierzchowski L; Bagnicka E BMC Vet Res; 2017 Jun; 13(1):161. PubMed ID: 28587645 [TBL] [Abstract][Full Text] [Related]
11. Integrated co-expression analysis of regulatory elements (miRNA, lncRNA, and TFs) in bovine monocytes induced by Str. uberis. Sharifi S; Pakdel A; Pakdel MH; Tabashiri R; Bakhtiarizadeh MR; Tahmasebi A Sci Rep; 2023 Sep; 13(1):15076. PubMed ID: 37699972 [TBL] [Abstract][Full Text] [Related]
12. Identification of several key genes by microarray data analysis of bovine mammary gland epithelial cells challenged with Escherichia coli and Staphylococcus aureus. Han H Gene; 2019 Jan; 683():123-132. PubMed ID: 30291872 [TBL] [Abstract][Full Text] [Related]
13. Prioritizing candidate genes post-GWAS using multiple sources of data for mastitis resistance in dairy cattle. Cai Z; Guldbrandtsen B; Lund MS; Sahana G BMC Genomics; 2018 Sep; 19(1):656. PubMed ID: 30189836 [TBL] [Abstract][Full Text] [Related]
14. Stearoyl-CoA desaturase 1 expression is downregulated in liver and udder during E. coli mastitis through enhanced expression of repressive C/EBP factors and reduced expression of the inducer SREBP1A. Xu T; Shen X; Seyfert HM BMC Mol Biol; 2016 Jul; 17(1):16. PubMed ID: 27439381 [TBL] [Abstract][Full Text] [Related]
15. Gene expression profiling of bovine mammary gland epithelial cells stimulated with lipoteichoic acid plus peptidoglycan from Staphylococcus aureus. Im J; Lee T; Jeon JH; Baik JE; Kim KW; Kang SS; Yun CH; Kim H; Han SH Int Immunopharmacol; 2014 Jul; 21(1):231-40. PubMed ID: 24836680 [TBL] [Abstract][Full Text] [Related]
16. Meta-Analysis of Transcriptional Responses to Mastitis-Causing Escherichia coli. Younis S; Javed Q; Blumenberg M PLoS One; 2016; 11(3):e0148562. PubMed ID: 26933871 [TBL] [Abstract][Full Text] [Related]
17. Lactoferrin gene promoter variants and their association with clinical and subclinical mastitis in indigenous and crossbred cattle. Chopra A; Gupta ID; Verma A; Chakravarty AK; Vohra V Pol J Vet Sci; 2015; 18(3):465-71. PubMed ID: 26618577 [TBL] [Abstract][Full Text] [Related]
19. [Comparative analysis on content and distribution of CpG sites in milk production traits and mastitis-related genes in dairy cattle]. Xie XL; Yu Y; Yuan ZF; Yang J; Ma PP; Li DC; Yu SK; An F; Feng XJ; Zhang Y Yi Chuan; 2012 Apr; 34(4):437-44. PubMed ID: 22522161 [TBL] [Abstract][Full Text] [Related]
20. The Impact of Intramammary Escherichia coli Challenge on Liver and Mammary Transcriptome and Cross-Talk in Dairy Cows during Early Lactation Using RNAseq. Moyes KM; Sørensen P; Bionaz M PLoS One; 2016; 11(6):e0157480. PubMed ID: 27336699 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]