These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 31618939)

  • 1. A Frequency Up-Converted Hybrid Energy Harvester Using Transverse Impact-Driven Piezoelectric Bimorph for Human-Limb Motion.
    Halim MA; Kabir MH; Cho H; Park JY
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31618939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear Segmented Arc-Shaped Piezoelectric Branch Beam Energy Harvester for Ultra-Low Frequency Vibrations.
    Piyarathna IE; Thabet AM; Ucgul M; Lemckert C; Lim YY; Tang ZS
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37299984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Non-Resonant Piezoelectric-Electromagnetic-Triboelectric Hybrid Energy Harvester for Low-Frequency Human Motions.
    Tang G; Wang Z; Hu X; Wu S; Xu B; Li Z; Yan X; Xu F; Yuan D; Li P; Shi Q; Lee C
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of a Novel Ultra-Low-Frequency Rotational Energy Harvester Based on a Double-Frequency Up-Conversion Mechanism.
    Li N; Xia H; Yang C; Luo T; Qin L
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electro-Mechanical Characterization and Modeling of a Broadband Piezoelectric Microgenerator Based on Lithium Niobate.
    Panayanthatta N; Clementi G; Ouhabaz M; Margueron S; Bartasyte A; Lallart M; Basrour S; La Rosa R; Bano E; Montes L
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and optimisation of magnetically-tunable hybrid piezoelectric-triboelectric energy harvester.
    Ganapathy SR; Salleh H; Azhar MKA
    Sci Rep; 2021 Feb; 11(1):4458. PubMed ID: 33627722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a multi-direction piezoelectric and electromagnetic hybrid energy harvester used for ocean wave energy harvesting.
    Chen L; Li C; Fang J
    Rev Sci Instrum; 2023 Dec; 94(12):. PubMed ID: 38088781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implantable Cardiac Kirigami-Inspired Lead-Based Energy Harvester Fabricated by Enhanced Piezoelectric Composite Film.
    Xu Z; Jin C; Cabe A; Escobedo D; Gruslova A; Jenney S; Closson AB; Dong L; Chen Z; Feldman MD; Zhang JXJ
    Adv Healthc Mater; 2021 Apr; 10(8):e2002100. PubMed ID: 33434407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the Dynamic Characteristics of a Micro-Piezoelectric Bimorph Beam Based on an Admittance Test.
    Zheng T; Chen S; Lei L; Deng Z; Zhang C; Yang X; Zou H; Xu M
    Micromachines (Basel); 2017 Jul; 8(7):. PubMed ID: 30400411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Comparative Numerical Study on Piezoelectric Energy Harvester for Self-Powered Pacemaker Application.
    Kumar A; Kiran R; Kumar S; Chauhan VS; Kumar R; Vaish R
    Glob Chall; 2018 Jan; 2(1):1700084. PubMed ID: 31565302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wind-Speed-Adaptive Resonant Piezoelectric Energy Harvester for Offshore Wind Energy Collection.
    Wu W; Pan Z; Zhou J; Wang Y; Ma J; Li J; Hu Y; Wen J; Wang X
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38474906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Harnessing flow-induced vibrations for energy harvesting: Experimental and numerical insights using piezoelectric transducer.
    Islam M; Ali U; Mone S
    PLoS One; 2024; 19(6):e0304489. PubMed ID: 38857262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Array Magnetic Coupling Piezoelectric and Electromagnetic Energy Harvester for Rotary Excitation.
    Chen Q; Li C; Lv M
    Micromachines (Basel); 2023 Jul; 14(8):. PubMed ID: 37630063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BaHf
    Brault D; Boy P; Levassort F; Poulin-Vittrant G; Bantignies C; Hoang T; Bavencoffe M
    Materials (Basel); 2024 Mar; 17(7):. PubMed ID: 38612023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Push-Pull Inverter Using Amplitude Control and Frequency Tracking for Piezoelectric Transducers.
    Hu Y; Yang M; Zhu Y; Wang S
    Micromachines (Basel); 2023 Nov; 14(12):. PubMed ID: 38138316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All-in-One High-Power-Density Vibrational Energy Harvester with Impact-Induced Frequency Broadening Mechanisms.
    Cao Y; Shen W; Li F; Qi H; Wang J; Mao J; Yang Y; Tao K
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of a Symmetric Five-Bar Displacement Amplification Compliant Mechanism for Energy Harvesting.
    Elsisy MM; Arafa MH; Saleh CA; Anis YH
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33562599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Motion Capturing and Energy Harvesting Hybridized Lower-Limb System for Rehabilitation and Sports Applications.
    Gao S; He T; Zhang Z; Ao H; Jiang H; Lee C
    Adv Sci (Weinh); 2021 Oct; 8(20):e2101834. PubMed ID: 34414697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and study of an eccentric wheel drive-based rotating piezoelectric energy harvester.
    Liu X; Wang H; Lv X; Zhang L; He L
    Rev Sci Instrum; 2023 Nov; 94(11):. PubMed ID: 37916917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid energy harvester inspired by bionic flapping wing structure based on magnetic levitation.
    Fan B; Fang J; Jiang S; Li C; Shao J; Liu W
    Rev Sci Instrum; 2024 Jan; 95(1):. PubMed ID: 38214593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.