These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 31618940)
1. Data Products, Quality and Validation of the DLR Earth Sensing Imaging Spectrometer (DESIS). Alonso K; Bachmann M; Burch K; Carmona E; Cerra D; de Los Reyes R; Dietrich D; Heiden U; Hölderlin A; Ickes J; Knodt U; Krutz D; Lester H; Müller R; Pagnutti M; Reinartz P; Richter R; Ryan R; Sebastian I; Tegler M Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31618940 [TBL] [Abstract][Full Text] [Related]
2. The Instrument Design of the DLR Earth Sensing Imaging Spectrometer (DESIS). Krutz D; Müller R; Knodt U; Günther B; Walter I; Sebastian I; Säuberlich T; Reulke R; Carmona E; Eckardt A; Venus H; Fischer C; Zender B; Arloth S; Lieder M; Neidhardt M; Grote U; Schrandt F; Gelmi S; Wojtkowiak A Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30987374 [TBL] [Abstract][Full Text] [Related]
3. Potential of DESIS and PRISMA hyperspectral remote sensing data in rock classification and mineral identification:a case study for Banswara in Rajasthan, India. Tripathi P; Garg RD Environ Monit Assess; 2023 Apr; 195(5):575. PubMed ID: 37060427 [TBL] [Abstract][Full Text] [Related]
4. PACO: Python-Based Atmospheric COrrection. de Los Reyes R; Langheinrich M; Schwind P; Richter R; Pflug B; Bachmann M; Müller R; Carmona E; Zekoll V; Reinartz P Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32151105 [TBL] [Abstract][Full Text] [Related]
5. Atmospheric correction of vegetation reflectance with simulation-trained deep learning for ground-based hyperspectral remote sensing. Qamar F; Dobler G Plant Methods; 2023 Jul; 19(1):74. PubMed ID: 37516859 [TBL] [Abstract][Full Text] [Related]
6. Reflectance Hyperspectral Imaging for Investigation of Works of Art: Old Master Paintings and Illuminated Manuscripts. Cucci C; Delaney JK; Picollo M Acc Chem Res; 2016 Oct; 49(10):2070-2079. PubMed ID: 27677864 [TBL] [Abstract][Full Text] [Related]
7. Acquisition of High Spectral Resolution Diffuse Reflectance Image Cubes (350-2500 nm) from Archaeological Wall Paintings and Other Immovable Heritage Using a Field-Deployable Spatial Scanning Reflectance Spectrometry Hyperspectral System. Radpour R; Delaney JK; Kakoulli I Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271062 [TBL] [Abstract][Full Text] [Related]
8. Detection and Relative Quantification of Neodymium in Sillai Patti Carbonatite Using Decision Tree Classification of the Hyperspectral Data. Qasim M; Khan SD Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236636 [TBL] [Abstract][Full Text] [Related]
9. [Study on the modeling of earth-atmosphere coupling over rugged scenes for hyperspectral remote sensing]. Zhao HJ; Jiang C; Jia GR Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jan; 34(1):191-5. PubMed ID: 24783559 [TBL] [Abstract][Full Text] [Related]
10. GEO-CEOS stage 4 validation of the Satellite Image Automatic Mapper lightweight computer program for ESA Earth observation level 2 product generation - Part 1: Theory. Baraldi A; Humber ML; Tiede D; Lang S Cogent Geosci; 2018; 4(1):1-46. PubMed ID: 30035156 [TBL] [Abstract][Full Text] [Related]
11. In-situ and airborne hyperspectral data for detecting agricultural activities in a dense forest landscape. Rajesh CB; Kumar CVSSM; Jha SS; Ramachandran KI; Nidamanuri RR Data Brief; 2023 Oct; 50():109510. PubMed ID: 37663764 [TBL] [Abstract][Full Text] [Related]
12. GEO-CEOS stage 4 validation of the Satellite Image Automatic Mapper lightweight computer program for ESA Earth observation level 2 product generation - Part 2: Validation. Baraldi A; Humber ML; Tiede D; Lang S Cogent Geosci; 2018; 4(1):1467254. PubMed ID: 30035157 [TBL] [Abstract][Full Text] [Related]
13. Onboard spectral calibration and validation of the satellite calibration spectrometer on HY-1C. Xu H; Huang W; Si X; Li X; Xu W; Zhang L; Song Q; Gao H Opt Express; 2022 Jul; 30(15):27645-27661. PubMed ID: 36236931 [TBL] [Abstract][Full Text] [Related]
14. Hyperspectral camera as a compact payload architecture for remote sensing applications. Morales-Norato D; Urrea S; Garcia H; Rodriguez-Ferreira J; Martinez E; Arguello H; Silva-Lora A; Torres R; Acero IF; Hernández FL; Cárdenas LP; Rincón S Appl Opt; 2023 Mar; 62(8):C88-C98. PubMed ID: 37133064 [TBL] [Abstract][Full Text] [Related]
15. SUREHYP: An Open Source Python Package for Preprocessing Hyperion Radiance Data and Retrieving Surface Reflectance. Miraglio T; Coops NC Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501908 [TBL] [Abstract][Full Text] [Related]
16. Thermal infrared spectrometer for Earth science remote sensing applications-instrument modifications and measurement procedures. Hecker C; Hook S; van der Meijde M; Bakker W; van der Werff H; Wilbrink H; van Ruitenbeek F; de Smeth B; van der Meer F Sensors (Basel); 2011; 11(11):10981-99. PubMed ID: 22346683 [TBL] [Abstract][Full Text] [Related]
17. Leonardo spaceborne infrared payloads for Earth observation: SLSTRs for Copernicus Sentinel 3 and PRISMA hyperspectral camera for PRISMA satellite. Coppo P; Brandani F; Faraci M; Sarti F; Dami M; Chiarantini L; Ponticelli B; Giunti L; Fossati E; Cosi M Appl Opt; 2020 Aug; 59(23):6888-6901. PubMed ID: 32788792 [TBL] [Abstract][Full Text] [Related]
18. [Retrieval of spectral characteristics of hyperspectral sensor and retrieval of reflectance spectra]. Wang TX; Yan GJ; Ren HZ; Mu XH Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Oct; 30(10):2714-8. PubMed ID: 21137406 [TBL] [Abstract][Full Text] [Related]