BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 31619508)

  • 41. Purification and properties of recombinant Brassica napus diacylglycerol acyltransferase 1.
    Caldo KM; Greer MS; Chen G; Lemieux MJ; Weselake RJ
    FEBS Lett; 2015 Mar; 589(6):773-8. PubMed ID: 25687632
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Engineering increased triacylglycerol accumulation in Saccharomyces cerevisiae using a modified type 1 plant diacylglycerol acyltransferase.
    Greer MS; Truksa M; Deng W; Lung SC; Chen G; Weselake RJ
    Appl Microbiol Biotechnol; 2015 Mar; 99(5):2243-53. PubMed ID: 25520169
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Function and localization of the Arabidopsis thaliana diacylglycerol acyltransferase DGAT2 expressed in yeast.
    Aymé L; Baud S; Dubreucq B; Joffre F; Chardot T
    PLoS One; 2014; 9(3):e92237. PubMed ID: 24663078
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly.
    Bates PD; Johnson SR; Cao X; Li J; Nam JW; Jaworski JG; Ohlrogge JB; Browse J
    Proc Natl Acad Sci U S A; 2014 Jan; 111(3):1204-9. PubMed ID: 24398521
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plant acyl-CoA:lysophosphatidylcholine acyltransferases (LPCATs) have different specificities in their forward and reverse reactions.
    Lager I; Yilmaz JL; Zhou XR; Jasieniecka K; Kazachkov M; Wang P; Zou J; Weselake R; Smith MA; Bayon S; Dyer JM; Shockey JM; Heinz E; Green A; Banas A; Stymne S
    J Biol Chem; 2013 Dec; 288(52):36902-14. PubMed ID: 24189065
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mapping the genome of rapeseed (Brassica napus L.). II. Localization of genes controlling erucic acid synthesis and seed oil content.
    Ecke W; Uzunova M; Weißleder K
    Theor Appl Genet; 1995 Nov; 91(6-7):972-7. PubMed ID: 24169985
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biochemical pathways in seed oil synthesis.
    Bates PD; Stymne S; Ohlrogge J
    Curr Opin Plant Biol; 2013 Jun; 16(3):358-64. PubMed ID: 23529069
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Acyl-lipid metabolism.
    Li-Beisson Y; Shorrosh B; Beisson F; Andersson MX; Arondel V; Bates PD; Baud S; Bird D; Debono A; Durrett TP; Franke RB; Graham IA; Katayama K; Kelly AA; Larson T; Markham JE; Miquel M; Molina I; Nishida I; Rowland O; Samuels L; Schmid KM; Wada H; Welti R; Xu C; Zallot R; Ohlrogge J
    Arabidopsis Book; 2013; 11():e0161. PubMed ID: 23505340
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The significance of different diacylgycerol synthesis pathways on plant oil composition and bioengineering.
    Bates PD; Browse J
    Front Plant Sci; 2012; 3():147. PubMed ID: 22783267
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Acyl-CoA:diacylglycerol acyltransferase: molecular biology, biochemistry and biotechnology.
    Liu Q; Siloto RM; Lehner R; Stone SJ; Weselake RJ
    Prog Lipid Res; 2012 Oct; 51(4):350-77. PubMed ID: 22705711
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparative deep transcriptional profiling of four developing oilseeds.
    Troncoso-Ponce MA; Kilaru A; Cao X; Durrett TP; Fan J; Jensen JK; Thrower NA; Pauly M; Wilkerson C; Ohlrogge JB
    Plant J; 2011 Dec; 68(6):1014-27. PubMed ID: 21851431
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Vernonia DGATs increase accumulation of epoxy fatty acids in oil.
    Li R; Yu K; Hatanaka T; Hildebrand DF
    Plant Biotechnol J; 2010 Feb; 8(2):184-95. PubMed ID: 20078841
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Increasing the flow of carbon into seed oil.
    Weselake RJ; Taylor DC; Rahman MH; Shah S; Laroche A; McVetty PBE; Harwood JL
    Biotechnol Adv; 2009; 27(6):866-878. PubMed ID: 19625012
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Antisense suppression of type 1 diacylglycerol acyltransferase adversely affects plant development in Brassica napus.
    Lock YY; Snyder CL; Zhu W; Siloto RM; Weselake RJ; Shah S
    Physiol Plant; 2009 Sep; 137(1):61-71. PubMed ID: 19602173
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil.
    Burgal J; Shockey J; Lu C; Dyer J; Larson T; Graham I; Browse J
    Plant Biotechnol J; 2008 Oct; 6(8):819-31. PubMed ID: 18643899
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High-value oils from plants.
    Dyer JM; Stymne S; Green AG; Carlsson AS
    Plant J; 2008 May; 54(4):640-55. PubMed ID: 18476869
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Plant triacylglycerols as feedstocks for the production of biofuels.
    Durrett TP; Benning C; Ohlrogge J
    Plant J; 2008 May; 54(4):593-607. PubMed ID: 18476866
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparing individual means in the analysis of variance.
    TUKEY JW
    Biometrics; 1949 Jun; 5(2):99-114. PubMed ID: 18151955
    [No Abstract]   [Full Text] [Related]  

  • 59. Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum.
    Shockey JM; Gidda SK; Chapital DC; Kuan JC; Dhanoa PK; Bland JM; Rothstein SJ; Mullen RT; Dyer JM
    Plant Cell; 2006 Sep; 18(9):2294-313. PubMed ID: 16920778
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lipids as renewable resources: current state of chemical and biotechnological conversion and diversification.
    Metzger JO; Bornscheuer U
    Appl Microbiol Biotechnol; 2006 Jun; 71(1):13-22. PubMed ID: 16604360
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.