These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 31619843)

  • 1. Comparing the Robustness of Stepwise Mixture Modeling With Continuous Nonnormal Distal Outcomes.
    Shin M; No U; Hong S
    Educ Psychol Meas; 2019 Dec; 79(6):1156-1183. PubMed ID: 31619843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth Mixture Modeling With Nonnormal Distributions: Implications for Data Transformation.
    Nam Y; Hong S
    Educ Psychol Meas; 2021 Aug; 81(4):698-727. PubMed ID: 34267397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Comparison of Mixture Modeling Approaches in Latent Class Models With External Variables Under Small Samples.
    No U; Hong S
    Educ Psychol Meas; 2018 Dec; 78(6):925-951. PubMed ID: 30559509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing the Performance of Improved Classify-Analyze Approaches For Distal Outcomes in Latent Profile Analysis.
    Dziak JJ; Bray BC; Zhang J; Zhang M; Lanza ST
    Methodology (Gott); 2016 Oct; 12(4):107-116. PubMed ID: 28630602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating Approaches to Estimating Covariate Effects in Growth Mixture Modeling: A Simulation Study.
    Li M; Harring JR
    Educ Psychol Meas; 2017 Oct; 77(5):766-791. PubMed ID: 29795930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracting Spurious Latent Classes in Growth Mixture Modeling With Nonnormal Errors.
    Guerra-Peña K; Steinley D
    Educ Psychol Meas; 2016 Dec; 76(6):933-953. PubMed ID: 29795894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Latent Class Analysis With Distal Outcomes: A Flexible Model-Based Approach.
    Lanza ST; Tan X; Bray BC
    Struct Equ Modeling; 2013 Jan; 20(1):1-26. PubMed ID: 25419096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Class Enumeration and Parameter Recovery of Growth Mixture Modeling and Second-Order Growth Mixture Modeling in the Presence of Measurement Noninvariance between Latent Classes.
    Kim ES; Wang Y
    Front Psychol; 2017; 8():1499. PubMed ID: 28928691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SEM-Based Methods to Form Confidence Intervals for Indirect Effect: Still Applicable Given Nonnormality, Under Certain Conditions.
    Pesigan IJA; Cheung SF
    Front Psychol; 2020; 11():571928. PubMed ID: 33391086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Examining Nonnormal Latent Variable Distributions for Non-Ignorable Missing Data.
    Liu CW
    Appl Psychol Meas; 2021 May; 45(3):159-177. PubMed ID: 33958834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Normality assumption in latent interaction models.
    Lonati S; Rönkkö M; Antonakis J
    Psychol Methods; 2024 Apr; ():. PubMed ID: 38573667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implementing continuous non-normal skewed distributions in latent growth mixture modeling: An assessment of specification errors and class enumeration.
    Depaoli S; Winter SD; Lai K; Guerra-Peña K
    Multivariate Behav Res; 2019; 54(6):795-821. PubMed ID: 31012738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Latent Class Mediation: A Comparison of Six Approaches.
    Hsiao YY; Kruger ES; Lee Van Horn M; Tofighi D; MacKinnon DP; Witkiewitz K
    Multivariate Behav Res; 2021; 56(4):543-557. PubMed ID: 32525404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Confirmatory factor analysis with ordinal data: Comparing robust maximum likelihood and diagonally weighted least squares.
    Li CH
    Behav Res Methods; 2016 Sep; 48(3):936-49. PubMed ID: 26174714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Comparison of Different Nonnormal Distributions in Growth Mixture Models.
    Son S; Lee H; Jang Y; Yang J; Hong S
    Educ Psychol Meas; 2019 Jun; 79(3):577-597. PubMed ID: 31105324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating Latent Variable Interactions With Non-Normal Observed Data: A Comparison of Four Approaches.
    Cham H; West SG; Ma Y; Aiken LS
    Multivariate Behav Res; 2012 Nov; 47(6):840-876. PubMed ID: 23457417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rasch Model Parameter Estimation in the Presence of a Nonnormal Latent Trait Using a Nonparametric Bayesian Approach.
    Finch H; Edwards JM
    Educ Psychol Meas; 2016 Aug; 76(4):662-684. PubMed ID: 29795882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Monte Carlo investigation of the Fisher Z transformation for normal and nonnormal distributions.
    Berry KJ; Mielke PW
    Psychol Rep; 2000 Dec; 87(3 Pt 2):1101-14. PubMed ID: 11272750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Impact of Item Misspecification and Dichotomization on Class and Parameter Recovery in LCA of Count Data.
    Macia KS; Wickham RE
    Multivariate Behav Res; 2019; 54(1):113-145. PubMed ID: 30595072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Cautionary Note on the Use of the Vale and Maurelli Method to Generate Multivariate, Nonnormal Data for Simulation Purposes.
    Olvera Astivia OL; Zumbo BD
    Educ Psychol Meas; 2015 Aug; 75(4):541-567. PubMed ID: 29795832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.