These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 31619921)
1. An Efficient Feature Extraction Technique Based on Local Coding PSSM and Multifeatures Fusion for Predicting Protein-Protein Interactions. An JY; Zhou Y; Zhao YJ; Yan ZJ Evol Bioinform Online; 2019; 15():1176934319879920. PubMed ID: 31619921 [TBL] [Abstract][Full Text] [Related]
2. RVMAB: Using the Relevance Vector Machine Model Combined with Average Blocks to Predict the Interactions of Proteins from Protein Sequences. An JY; You ZH; Meng FR; Xu SJ; Wang Y Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27213337 [TBL] [Abstract][Full Text] [Related]
3. Predicting Protein-Protein Interactions via Random Ferns with Evolutionary Matrix Representation. Li Y; Wang Z; You ZH; Li LP; Hu X Comput Math Methods Med; 2022; 2022():7191684. PubMed ID: 35242211 [TBL] [Abstract][Full Text] [Related]
4. Accurate prediction of protein-protein interactions by integrating potential evolutionary information embedded in PSSM profile and discriminative vector machine classifier. Li ZW; You ZH; Chen X; Li LP; Huang DS; Yan GY; Nie R; Huang YA Oncotarget; 2017 Apr; 8(14):23638-23649. PubMed ID: 28423569 [TBL] [Abstract][Full Text] [Related]
5. Improving protein-protein interactions prediction accuracy using protein evolutionary information and relevance vector machine model. An JY; Meng FR; You ZH; Chen X; Yan GY; Hu JP Protein Sci; 2016 Oct; 25(10):1825-33. PubMed ID: 27452983 [TBL] [Abstract][Full Text] [Related]
6. Highly accurate prediction of protein self-interactions by incorporating the average block and PSSM information into the general PseAAC. Zhai JX; Cao TJ; An JY; Bian YT J Theor Biol; 2017 Nov; 432():80-86. PubMed ID: 28802824 [TBL] [Abstract][Full Text] [Related]
7. Predicting Protein-Protein Interactions Based on Ensemble Learning-Based Model from Protein Sequence. Zhan X; Xiao M; You Z; Yan C; Guo J; Wang L; Sun Y; Shang B Biology (Basel); 2022 Jun; 11(7):. PubMed ID: 36101379 [TBL] [Abstract][Full Text] [Related]
8. Computational methods using weighed-extreme learning machine to predict protein self-interactions with protein evolutionary information. An JY; Zhang L; Zhou Y; Zhao YJ; Wang DF J Cheminform; 2017 Aug; 9(1):47. PubMed ID: 29086182 [TBL] [Abstract][Full Text] [Related]
9. Prediction of protein-protein interactions from amino acid sequences using a novel multi-scale continuous and discontinuous feature set. You ZH; Zhu L; Zheng CH; Yu HJ; Deng SP; Ji Z BMC Bioinformatics; 2014; 15 Suppl 15(Suppl 15):S9. PubMed ID: 25474679 [TBL] [Abstract][Full Text] [Related]
10. Detection of Interactions between Proteins by Using Legendre Moments Descriptor to Extract Discriminatory Information Embedded in PSSM. Wang YB; You ZH; Li LP; Huang YA; Yi HC Molecules; 2017 Aug; 22(8):. PubMed ID: 28820478 [TBL] [Abstract][Full Text] [Related]
11. Using discriminative vector machine model with 2DPCA to predict interactions among proteins. Li Z; Nie R; You Z; Cao C; Li J BMC Bioinformatics; 2019 Dec; 20(Suppl 25):694. PubMed ID: 31874626 [TBL] [Abstract][Full Text] [Related]
12. Predicting protein-protein interactions from protein sequences by a stacked sparse autoencoder deep neural network. Wang YB; You ZH; Li X; Jiang TH; Chen X; Zhou X; Wang L Mol Biosyst; 2017 Jun; 13(7):1336-1344. PubMed ID: 28604872 [TBL] [Abstract][Full Text] [Related]
13. An efficient computational method for predicting drug-target interactions using weighted extreme learning machine and speed up robot features. An JY; Meng FR; Yan ZJ BioData Min; 2021 Jan; 14(1):3. PubMed ID: 33472664 [TBL] [Abstract][Full Text] [Related]
14. PCVMZM: Using the Probabilistic Classification Vector Machines Model Combined with a Zernike Moments Descriptor to Predict Protein-Protein Interactions from Protein Sequences. Wang Y; You Z; Li X; Chen X; Jiang T; Zhang J Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28492483 [TBL] [Abstract][Full Text] [Related]
15. CPIELA: Computational Prediction of Plant Protein-Protein Interactions by Ensemble Learning Approach From Protein Sequences and Evolutionary Information. Li LP; Zhang B; Cheng L Front Genet; 2022; 13():857839. PubMed ID: 35360876 [TBL] [Abstract][Full Text] [Related]
16. Improved protein-protein interactions prediction via weighted sparse representation model combining continuous wavelet descriptor and PseAA composition. Huang YA; You ZH; Chen X; Yan GY BMC Syst Biol; 2016 Dec; 10(Suppl 4):120. PubMed ID: 28155718 [TBL] [Abstract][Full Text] [Related]
17. Advancing the prediction accuracy of protein-protein interactions by utilizing evolutionary information from position-specific scoring matrix and ensemble classifier. Wang L; You ZH; Xia SX; Liu F; Chen X; Yan X; Zhou Y J Theor Biol; 2017 Apr; 418():105-110. PubMed ID: 28088356 [TBL] [Abstract][Full Text] [Related]
18. An Ensemble Classifier to Predict Protein-Protein Interactions by Combining PSSM-based Evolutionary Information with Local Binary Pattern Model. Li Y; Li LP; Wang L; Yu CQ; Wang Z; You ZH Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31319578 [TBL] [Abstract][Full Text] [Related]
19. A Novel Ensemble Learning-Based Computational Method to Predict Protein-Protein Interactions from Protein Primary Sequences. Pan J; Wang S; Yu C; Li L; You Z; Sun Y Biology (Basel); 2022 May; 11(5):. PubMed ID: 35625503 [TBL] [Abstract][Full Text] [Related]
20. Identification of self-interacting proteins by exploring evolutionary information embedded in PSI-BLAST-constructed position specific scoring matrix. An JY; You ZH; Chen X; Huang DS; Li ZW; Liu G; Wang Y Oncotarget; 2016 Dec; 7(50):82440-82449. PubMed ID: 27732957 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]