These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 31619953)

  • 1. Dry EEG in Sports Sciences: A Fast and Reliable Tool to Assess Individual Alpha Peak Frequency Changes Induced by Physical Effort.
    di Fronso S; Fiedler P; Tamburro G; Haueisen J; Bertollo M; Comani S
    Front Neurosci; 2019; 13():982. PubMed ID: 31619953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high-density 256-channel cap for dry electroencephalography.
    Fiedler P; Fonseca C; Supriyanto E; Zanow F; Haueisen J
    Hum Brain Mapp; 2022 Mar; 43(4):1295-1308. PubMed ID: 34796574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Arch Electrode: A Novel Dry Electrode Concept for Improved Wearing Comfort.
    Vasconcelos B; Fiedler P; Machts R; Haueisen J; Fonseca C
    Front Neurosci; 2021; 15():748100. PubMed ID: 34733134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-Center Evaluation of Gel-Based and Dry Multipin EEG Caps.
    Ng CR; Fiedler P; Kuhlmann L; Liley D; Vasconcelos B; Fonseca C; Tamburro G; Comani S; Lui TK; Tse CY; Warsito IF; Supriyanto E; Haueisen J
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Multipin Electrode Cap System for Dry Electroencephalography.
    Fiedler P; Pedrosa P; Griebel S; Fonseca C; Vaz F; Supriyanto E; Zanow F; Haueisen J
    Brain Topogr; 2015 Sep; 28(5):647-656. PubMed ID: 25998854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flower electrodes for comfortable dry electroencephalography.
    Warsito IF; Komosar M; Bernhard MA; Fiedler P; Haueisen J
    Sci Rep; 2023 Oct; 13(1):16589. PubMed ID: 37789022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous Dry and Gel-Based High-Density Electroencephalography Recordings.
    Fiedler P; Graichen U; Zimmer E; Haueisen J
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic comparison between a wireless EEG system with dry electrodes and a wired EEG system with wet electrodes.
    Kam JWY; Griffin S; Shen A; Patel S; Hinrichs H; Heinze HJ; Deouell LY; Knight RT
    Neuroimage; 2019 Jan; 184():119-129. PubMed ID: 30218769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Dry Revolution: Evaluation of Three Different EEG Dry Electrode Types in Terms of Signal Spectral Features, Mental States Classification and Usability.
    Di Flumeri G; Aricò P; Borghini G; Sciaraffa N; Di Florio A; Babiloni F
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30893791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deployment of Mobile EEG Technology in an Art Museum Setting: Evaluation of Signal Quality and Usability.
    Cruz-Garza JG; Brantley JA; Nakagome S; Kontson K; Megjhani M; Robleto D; Contreras-Vidal JL
    Front Hum Neurosci; 2017; 11():527. PubMed ID: 29176943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a Dry EEG System for Application of Passive Brain-Computer Interfaces in Autonomous Driving.
    Zander TO; Andreessen LM; Berg A; Bleuel M; Pawlitzki J; Zawallich L; Krol LR; Gramann K
    Front Hum Neurosci; 2017; 11():78. PubMed ID: 28293184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contact Pressure and Flexibility of Multipin Dry EEG Electrodes.
    Fiedler P; Muhle R; Griebel S; Pedrosa P; Fonseca C; Vaz F; Zanow F; Haueisen J
    IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):750-757. PubMed ID: 29641379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single trial classification of motor imagination using 6 dry EEG electrodes.
    Popescu F; Fazli S; Badower Y; Blankertz B; Müller KR
    PLoS One; 2007 Jul; 2(7):e637. PubMed ID: 17653264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signal quality evaluation of an in-ear EEG device in comparison to a conventional cap system.
    Moumane H; Pazuelo J; Nassar M; Juez JY; Valderrama M; Le Van Quyen M
    Front Neurosci; 2024; 18():1441897. PubMed ID: 39319310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of Soft Multipin Dry EEG Electrodes.
    Heijs JJA; Havelaar RJ; Fiedler P; van Wezel RJA; Heida T
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of foam-based and spring-loaded dry EEG electrodes with wet electrodes in resting and moving conditions.
    Yeung A; Garudadri H; Van Toen C; Mercier P; Balkan O; Makeig S; Virji-Babul N
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7131-4. PubMed ID: 26737936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of a wireless dry electrode system for electroencephalography.
    Wyckoff SN; Sherlin LH; Ford NL; Dalke D
    J Neuroeng Rehabil; 2015 Oct; 12():95. PubMed ID: 26520574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dry electrode for EEG recording.
    Taheri BA; Knight RT; Smith RL
    Electroencephalogr Clin Neurophysiol; 1994 May; 90(5):376-83. PubMed ID: 7514984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Multichannel EEG Acquisition System With Novel Ag NWs/PDMS Flexible Dry Electrodes.
    Wang Z; Chen C; Li W; Yuan W; Han T; Sun C; Tao L; Zhao Y; Chen W
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1299-1302. PubMed ID: 30440629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-motion robots control based on bioelectric signals from single-channel dry electrode.
    Shen HM; Hu L; Lee KM; Fu X
    Proc Inst Mech Eng H; 2015 Feb; 229(2):124-36. PubMed ID: 25676167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.