These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 31619953)

  • 21. Modular multipin electrodes for comfortable dry EEG.
    Fiedler P; Strohmeier D; Hunold A; Griebel S; Muhle R; Schreiber M; Pedrosa P; Vasconcelos B; Fonseca C; Vaz F; Haueisen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5705-5708. PubMed ID: 28269550
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Impact of Vigorous Cycling Exercise on Visual Attention: A Study With the BR8 Wireless Dry EEG System.
    Lin CT; King JT; John AR; Huang KC; Cao Z; Wang YK
    Front Neurosci; 2021; 15():621365. PubMed ID: 33679304
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High and dry? Comparing active dry EEG electrodes to active and passive wet electrodes.
    Mathewson KE; Harrison TJ; Kizuk SA
    Psychophysiology; 2017 Jan; 54(1):74-82. PubMed ID: 28000254
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flexible graphene/GO electrode for gel-free EEG.
    Ko LW; Su CH; Liao PL; Liang JT; Tseng YH; Chen SH
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33831852
    [No Abstract]   [Full Text] [Related]  

  • 25. Novel active comb-shaped dry electrode for EEG measurement in hairy site.
    Huang YJ; Wu CY; Wong AM; Lin BS
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):256-63. PubMed ID: 25137719
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards out-of-the-lab EEG in uncontrolled environments: Feasibility study of dry EEG recordings during exercise bike riding.
    Kohli S; Casson AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1025-8. PubMed ID: 26736439
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In-service characterization of a polymer wick-based quasi-dry electrode for rapid pasteless electroencephalography.
    Pedrosa P; Fiedler P; Pestana V; Vasconcelos B; Gaspar H; Amaral MH; Freitas D; Haueisen J; Nóbrega JM; Fonseca C
    Biomed Tech (Berl); 2018 Jul; 63(4):349-359. PubMed ID: 28467306
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proposing Metrics for Benchmarking Novel EEG Technologies Towards Real-World Measurements.
    Oliveira AS; Schlink BR; Hairston WD; König P; Ferris DP
    Front Hum Neurosci; 2016; 10():188. PubMed ID: 27242467
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Validating a LEGO-Like EEG Headset for a Simultaneous Recording of Wet- and Dry-Electrode Systems During Treadmill Walking.
    Yang SY; Lin YP
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4055-4058. PubMed ID: 33018889
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison between a wireless dry electrode EEG system with a conventional wired wet electrode EEG system for clinical applications.
    Hinrichs H; Scholz M; Baum AK; Kam JWY; Knight RT; Heinze HJ
    Sci Rep; 2020 Mar; 10(1):5218. PubMed ID: 32251333
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Dry EEG-System for Scientific Research and Brain-Computer Interfaces.
    Zander TO; Lehne M; Ihme K; Jatzev S; Correia J; Kothe C; Picht B; Nijboer F
    Front Neurosci; 2011; 5():53. PubMed ID: 21647345
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel hydrogel-based preparation-free EEG electrode.
    Alba NA; Sclabassi RJ; Sun M; Cui XT
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):415-23. PubMed ID: 20423811
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comparative evaluation of signal quality between a research-grade and a wireless dry-electrode mobile EEG system.
    Marini F; Lee C; Wagner J; Makeig S; Gola M
    J Neural Eng; 2019 Sep; 16(5):054001. PubMed ID: 31096191
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new EEG recording system for passive dry electrodes.
    Gargiulo G; Calvo RA; Bifulco P; Cesarelli M; Jin C; Mohamed A; van Schaik A
    Clin Neurophysiol; 2010 May; 121(5):686-93. PubMed ID: 20097606
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design of smart EEG cap.
    Lin BS; Huang YK; Lin BS
    Comput Methods Programs Biomed; 2019 Sep; 178():41-46. PubMed ID: 31416561
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Movement Artifact Suppression in Wearable Low-Density and Dry EEG Recordings Using Active Electrodes and Artifact Subspace Reconstruction.
    Yang SY; Lin YP
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3844-3853. PubMed ID: 37751338
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Protocol for Comparing Dry and Wet EEG Electrodes During Sleep.
    Leach S; Chung KY; Tüshaus L; Huber R; Karlen W
    Front Neurosci; 2020; 14():586. PubMed ID: 32625053
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dry-Contact Electrode Ear-EEG.
    Kappel SL; Rank ML; Toft HO; Andersen M; Kidmose P
    IEEE Trans Biomed Eng; 2019 Jan; 66(1):150-158. PubMed ID: 29993415
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A semi-automatic method to determine electrode positions and labels from gel artifacts in EEG/fMRI-studies.
    de Munck JC; van Houdt PJ; Verdaasdonk RM; Ossenblok PP
    Neuroimage; 2012 Jan; 59(1):399-403. PubMed ID: 21784161
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A direct comparison of wet, dry and insulating bioelectric recording electrodes.
    Searle A; Kirkup L
    Physiol Meas; 2000 May; 21(2):271-83. PubMed ID: 10847194
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.