These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 31619981)

  • 1. Generating Pointing Motions for a Humanoid Robot by Combining Motor Primitives.
    Tieck JCV; Schnell T; Kaiser J; Mauch F; Roennau A; Dillmann R
    Front Neurorobot; 2019; 13():77. PubMed ID: 31619981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid CPG-ZMP control system for stable walking of a simulated flexible spine humanoid robot.
    Or J
    Neural Netw; 2010 Apr; 23(3):452-60. PubMed ID: 20031370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reverse control for humanoid robot task recognition.
    Hak S; Mansard N; Stasse O; Laumond JP
    IEEE Trans Syst Man Cybern B Cybern; 2012 Dec; 42(6):1524-37. PubMed ID: 22552575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergence of functional hierarchy in a multiple timescale neural network model: a humanoid robot experiment.
    Yamashita Y; Tani J
    PLoS Comput Biol; 2008 Nov; 4(11):e1000220. PubMed ID: 18989398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MACOP modular architecture with control primitives.
    Waegeman T; Hermans M; Schrauwen B
    Front Comput Neurosci; 2013; 7():99. PubMed ID: 23888140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Codevelopmental learning between human and humanoid robot using a dynamic neural-network model.
    Tani J; Nishimoto R; Namikawa J; Ito M
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):43-59. PubMed ID: 18270081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental Approach for Behavior Learning Using Primitive Motion Skills.
    Dawood F; Loo CK
    Int J Neural Syst; 2018 May; 28(4):1750038. PubMed ID: 29022403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Kinematic Motion Primitives (kMPs) - Theory and Application.
    Moro FL; Tsagarakis NG; Caldwell DG
    Front Neurorobot; 2012; 6():10. PubMed ID: 23091459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of a Humanoid NAO Robot by an Adaptive Bioinspired Cerebellar Module in 3D Motion Tasks.
    Antonietti A; Martina D; Casellato C; D'Angelo E; Pedrocchi A
    Comput Intell Neurosci; 2019; 2019():4862157. PubMed ID: 30833964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Biomimetic Control Method Increases the Adaptability of a Humanoid Robot Acting in a Dynamic Environment.
    Capolei MC; Angelidis E; Falotico E; Lund HH; Tolu S
    Front Neurorobot; 2019; 13():70. PubMed ID: 31555117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human-Inspired Online Path Planning and Biped Walking Realization in Unknown Environment.
    Raković M; Savić S; Santos-Victor J; Nikolić M; Borovac B
    Front Neurorobot; 2019; 13():36. PubMed ID: 31214011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Connecting Artificial Brains to Robots in a Comprehensive Simulation Framework: The Neurorobotics Platform.
    Falotico E; Vannucci L; Ambrosano A; Albanese U; Ulbrich S; Vasquez Tieck JC; Hinkel G; Kaiser J; Peric I; Denninger O; Cauli N; Kirtay M; Roennau A; Klinker G; Von Arnim A; Guyot L; Peppicelli D; Martínez-Cañada P; Ros E; Maier P; Weber S; Huber M; Plecher D; Röhrbein F; Deser S; Roitberg A; van der Smagt P; Dillman R; Levi P; Laschi C; Knoll AC; Gewaltig MO
    Front Neurorobot; 2017; 11():2. PubMed ID: 28179882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human-Like Behavior Generation Based on Head-Arms Model for Robot Tracking External Targets and Body Parts.
    Zhang Z; Beck A; Magnenat-Thalmann N
    IEEE Trans Cybern; 2015 Aug; 45(8):1390-400. PubMed ID: 25252290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning to generate articulated behavior through the bottom-up and the top-down interaction processes.
    Tani J
    Neural Netw; 2003 Jan; 16(1):11-23. PubMed ID: 12576102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The eMOSAIC model for humanoid robot control.
    Sugimoto N; Morimoto J; Hyon SH; Kawato M
    Neural Netw; 2012 May; 29-30():8-19. PubMed ID: 22366503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robot Learning Method for Human-like Arm Skills Based on the Hybrid Primitive Framework.
    Li J; Han H; Hu J; Lin J; Li P
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase portraits as movement primitives for fast humanoid robot control.
    Maeda G; Koç O; Morimoto J
    Neural Netw; 2020 Sep; 129():109-122. PubMed ID: 32505964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor-Skill Learning in an Insect Inspired Neuro-Computational Control System.
    Arena E; Arena P; Strauss R; Patané L
    Front Neurorobot; 2017; 11():12. PubMed ID: 28337138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Investigations into Using Motion Capture State Feedback for Real-Time Control of a Humanoid Robot.
    Popescu M; Mronga D; Bergonzani I; Kumar S; Kirchner F
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560239
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 14.