These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31620556)

  • 1. Extreme biomimetics: Preservation of molecular detail in centimeter-scale samples of biological meshes laid down by sponges.
    Petrenko I; Summers AP; Simon P; Żółtowska-Aksamitowska S; Motylenko M; Schimpf C; Rafaja D; Roth F; Kummer K; Brendler E; Pokrovsky OS; Galli R; Wysokowski M; Meissner H; Niederschlag E; Joseph Y; Molodtsov S; Ereskovsky A; Sivkov V; Nekipelov S; Petrova O; Volkova O; Bertau M; Kraft M; Rogalev A; Kopani M; Jesioniowski T; Ehrlich H
    Sci Adv; 2019 Oct; 5(10):eaax2805. PubMed ID: 31620556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Marine Spongin: Naturally Prefabricated 3D Scaffold-Based Biomaterial.
    Jesionowski T; Norman M; Żółtowska-Aksamitowska S; Petrenko I; Joseph Y; Ehrlich H
    Mar Drugs; 2018 Mar; 16(3):. PubMed ID: 29522478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extreme Biomimetics: Designing of the First Nanostructured 3D Spongin-Atacamite Composite and its Application.
    Tsurkan D; Simon P; Schimpf C; Motylenko M; Rafaja D; Roth F; Inosov DS; Makarova AA; Stepniak I; Petrenko I; Springer A; Langer E; Kulbakov AA; Avdeev M; Stefankiewicz AR; Heimler K; Kononchuk O; Hippmann S; Kaiser D; Viehweger C; Rogoll A; Voronkina A; Kovalchuk V; Bazhenov VV; Galli R; Rahimi-Nasrabadi M; Molodtsov SL; Rahimi P; Falahi S; Joseph Y; Vogt C; Vyalikh DV; Bertau M; Ehrlich H
    Adv Mater; 2021 Jul; 33(30):e2101682. PubMed ID: 34085323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creation of a 3D Goethite-Spongin Composite Using an Extreme Biomimetics Approach.
    Kubiak A; Voronkina A; Pajewska-Szmyt M; Kotula M; Leśniewski B; Ereskovsky A; Heimler K; Rogoll A; Vogt C; Rahimi P; Falahi S; Galli R; Langer E; Förste M; Charitos A; Joseph Y; Ehrlich H; Jesionowski T
    Biomimetics (Basel); 2023 Nov; 8(7):. PubMed ID: 37999174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization of Titanium(IV) Oxide onto 3D Spongin Scaffolds of Marine Sponge Origin According to Extreme Biomimetics Principles for Removal of C.I. Basic Blue 9.
    Szatkowski T; Siwińska-Stefańska K; Wysokowski M; Stelling AL; Joseph Y; Ehrlich H; Jesionowski T
    Biomimetics (Basel); 2017 Mar; 2(2):. PubMed ID: 31105167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spongin as a Unique 3D Template for the Development of Functional Iron-Based Composites Using Biomimetic Approach In Vitro.
    Kubiak A; Pajewska-Szmyt M; Kotula M; Leśniewski B; Voronkina A; Rahimi P; Falahi S; Heimler K; Rogoll A; Vogt C; Ereskovsky A; Simon P; Langer E; Springer A; Förste M; Charitos A; Joseph Y; Jesionowski T; Ehrlich H
    Mar Drugs; 2023 Aug; 21(9):. PubMed ID: 37755073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a biomimetic collagen-hydroxyapatite scaffold for bone tissue engineering using a SBF immersion technique.
    Al-Munajjed AA; Plunkett NA; Gleeson JP; Weber T; Jungreuthmayer C; Levingstone T; Hammer J; O'Brien FJ
    J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):584-91. PubMed ID: 19180526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parametric control of fiber morphology and tensile mechanics in scaffolds with high aspect ratio geometry produced via melt electrowriting for musculoskeletal soft tissue engineering.
    Warren PB; Davis ZG; Fisher MB
    J Mech Behav Biomed Mater; 2019 Nov; 99():153-160. PubMed ID: 31352215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manufacturing micropatterned collagen scaffolds with chemical-crosslinking for development of biomimetic tissue-engineered oral mucosa.
    Suzuki A; Kodama Y; Miwa K; Kishimoto K; Hoshikawa E; Haga K; Sato T; Mizuno J; Izumi K
    Sci Rep; 2020 Dec; 10(1):22192. PubMed ID: 33335194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast and reliable advanced two-step pore-size analysis of biomimetic 3D extracellular matrix scaffolds.
    Fischer T; Hayn A; Mierke CT
    Sci Rep; 2019 Jun; 9(1):8352. PubMed ID: 31175320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic composite scaffolds containing bioceramics and collagen/gelatin for bone tissue engineering - A mini review.
    Kuttappan S; Mathew D; Nair MB
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1390-1401. PubMed ID: 27316767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of intrafibrillar and extrafibrillar mineralized collagen/apatite scaffolds with a hierarchical structure.
    Hu C; Zilm M; Wei M
    J Biomed Mater Res A; 2016 May; 104(5):1153-61. PubMed ID: 26748775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical fabrication of a biomimetic elastin-containing bi-layered scaffold for vascular tissue engineering.
    Nguyen TU; Shojaee M; Bashur CA; Kishore V
    Biofabrication; 2018 Nov; 11(1):015007. PubMed ID: 30411718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T; Yang X; Qi X; Jiang C
    J Transl Med; 2015 May; 13():152. PubMed ID: 25952675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collagenous matrix supported by a 3D-printed scaffold for osteogenic differentiation of dental pulp cells.
    Fahimipour F; Dashtimoghadam E; Rasoulianboroujeni M; Yazdimamaghani M; Khoshroo K; Tahriri M; Yadegari A; Gonzalez JA; Vashaee D; Lobner DC; Jafarzadeh Kashi TS; Tayebi L
    Dent Mater; 2018 Feb; 34(2):209-220. PubMed ID: 29054688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manufacture of layered collagen/chitosan-polycaprolactone scaffolds with biomimetic microarchitecture.
    Zhu Y; Wan Y; Zhang J; Yin D; Cheng W
    Colloids Surf B Biointerfaces; 2014 Jan; 113():352-60. PubMed ID: 24121078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects.
    Wang Y; Van Manh N; Wang H; Zhong X; Zhang X; Li C
    Int J Nanomedicine; 2016; 11():2053-67. PubMed ID: 27274235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Vitro and in Vivo Analysis of Mineralized Collagen-Based Sponges Prepared by a Plasma- and Precursor-Assisted Biomimetic Process.
    Nathanael AJ; Oyane A; Nakamura M; Sakamaki I; Nishida E; Kanemoto Y; Miyaji H
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22185-22194. PubMed ID: 28621514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic sponge using duck's feet derived collagen and hydroxyapatite to promote bone regeneration.
    Song JE; Lee DH; Choi JH; Lee SW; Khang G; Yoon SJ
    J Biomater Sci Polym Ed; 2022 Apr; 33(6):769-782. PubMed ID: 34913857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment of Critical Size Femoral Bone Defects with Biomimetic Hybrid Scaffolds of 3D Plotted Calcium Phosphate Cement and Mineralized Collagen Matrix.
    Culla AC; Vater C; Tian X; Bolte J; Ahlfeld T; Bretschneider H; Pape A; Goodman SB; Gelinsky M; Zwingenberger S
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.