BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 31620737)

  • 1. Azo-based near-infrared fluorescent theranostic probe for tracking hypoxia-activated cancer chemotherapy in vivo.
    Ding N; Li Z; Tian X; Zhang J; Guo K; Wang P
    Chem Commun (Camb); 2019 Oct; 55(87):13172-13175. PubMed ID: 31620737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-infrared ratiometric self-assembled theranostic nanoprobe: imaging and tracking cancer chemotherapy.
    Tian X; Li Z; Ding N; Zhang J
    Chem Commun (Camb); 2020 Mar; 56(25):3629-3632. PubMed ID: 32104834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconsidering azobenzene as a component of small-molecule hypoxia-mediated cancer drugs: A theranostic case study.
    Verwilst P; Han J; Lee J; Mun S; Kang HG; Kim JS
    Biomaterials; 2017 Jan; 115():104-114. PubMed ID: 27886551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Azo-Based Hypoxia-Responsive Self-Assembly Near-Infrared Fluorescent Nanoprobe for In Vivo Real-Time Bioimaging of Tumors.
    Liu W; Yao X; Zhu W; Wang J; Zhou F; Qian X; Tiemuer A; Yang S; Wang HY; Liu Y
    ACS Appl Bio Mater; 2021 Mar; 4(3):2752-2758. PubMed ID: 35014314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zwitterionic near-infrared fluorophore for targeted photothermal cancer therapy.
    Lim W; Jo G; Kim EJ; Cho H; Park MH; Hyun H
    J Mater Chem B; 2020 Apr; 8(13):2589-2597. PubMed ID: 32129419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-infrared emitting fluorescent homobimetallic gold(I) complexes displaying promising in vitro and in vivo therapeutic properties.
    Lescure R; Privat M; Pliquett J; Massot A; Baffroy O; Busser B; Bellaye PS; Collin B; Denat F; Bettaïeb A; Sancey L; Paul C; Goze C; Bodio E
    Eur J Med Chem; 2021 Aug; 220():113483. PubMed ID: 33915372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational designed highly sensitive NQO1-activated near-infrared fluorescent probe combined with NQO1 substrates in vivo: An innovative strategy for NQO1-overexpressing cancer theranostics.
    Gong Q; Yang F; Hu J; Li T; Wang P; Li X; Zhang X
    Eur J Med Chem; 2021 Nov; 224():113707. PubMed ID: 34303080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PEGylated AIEgen molecular probe for hypoxia-mediated tumor imaging and photodynamic therapy.
    Li J; Liu W; Li Z; Hu Y; Yang J; Li J
    Chem Commun (Camb); 2021 May; 57(38):4710-4713. PubMed ID: 33977996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microenvironment-triggered dual-activation of a photosensitizer- fluorophore conjugate for tumor specific imaging and photodynamic therapy.
    Wang C; Wang S; Wang Y; Wu H; Bao K; Sheng R; Li X
    Sci Rep; 2020 Jul; 10(1):12127. PubMed ID: 32699340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox Dual-Responsive and O
    Chen H; Li F; Yao Y; Wang Z; Zhang Z; Tan N
    Theranostics; 2019; 9(1):90-103. PubMed ID: 30662556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time near-infrared bioimaging of a receptor-targeted cytotoxic dendritic theranostic agent.
    Wu J; Zhou Y; Li S; Qu D; Zhu WH; Tian H
    Biomaterials; 2017 Mar; 120():1-10. PubMed ID: 28011190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo ratiometric tracking of endogenous β-galactosidase activity using an activatable near-infrared fluorescent probe.
    Shi L; Yan C; Ma Y; Wang T; Guo Z; Zhu WH
    Chem Commun (Camb); 2019 Oct; 55(82):12308-12311. PubMed ID: 31556426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, Synthesis, and Biological Evaluation of Polyaminocarboxylate Ligand-Based Theranostic Conjugates for Antibody-Targeted Cancer Therapy and Near-Infrared Optical Imaging.
    Ren S; Sun X; Wang H; Nguyen TH; Sadeghipour N; Xu X; Kang CS; Liu Y; Xu H; Wu N; Chen Y; Tichauer K; Minh DDL; Chong HS
    ChemMedChem; 2018 Dec; 13(24):2606-2617. PubMed ID: 30403833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Glutathione (GSH)-Responsive Near-Infrared (NIR) Theranostic Prodrug for Cancer Therapy and Imaging.
    Kong F; Liang Z; Luan D; Liu X; Xu K; Tang B
    Anal Chem; 2016 Jun; 88(12):6450-6. PubMed ID: 27216623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a red-light emission hypoxia-sensitive two-photon fluorescent probe for in vivo nitroreductase imaging.
    Gebremedhin KH; Li Y; Yao Q; Xiao M; Gao F; Fan J; Du J; Long S; Peng X
    J Mater Chem B; 2019 Jan; 7(3):408-414. PubMed ID: 32254728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theranostic Liposomes with Hypoxia-Activated Prodrug to Effectively Destruct Hypoxic Tumors Post-Photodynamic Therapy.
    Feng L; Cheng L; Dong Z; Tao D; Barnhart TE; Cai W; Chen M; Liu Z
    ACS Nano; 2017 Jan; 11(1):927-937. PubMed ID: 28027442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Strategy for Validating the Existence and Mechanism of the "Gut-Liver Axis" in Vivo by a Hypoxia-Sensitive NIR Fluorescent Probe.
    Tian Y; Li Y; Wang WX; Jiang WL; Fei J; Li CY
    Anal Chem; 2020 Mar; 92(6):4244-4250. PubMed ID: 32066231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel near-infrared theranostic probe for accurate cancer chemotherapy
    Wang WX; Jiang WL; Mao GJ; Tan ZK; Tan M; Li CY
    Chem Commun (Camb); 2021 Dec; 57(100):13768-13771. PubMed ID: 34859797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescent Probe Based on Azobenzene-Cyclopalladium for the Selective Imaging of Endogenous Carbon Monoxide under Hypoxia Conditions.
    Li Y; Wang X; Yang J; Xie X; Li M; Niu J; Tong L; Tang B
    Anal Chem; 2016 Nov; 88(22):11154-11159. PubMed ID: 27748113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NIR-II Fluorescent Self-Assembled Peptide Nanochain for Ultrasensitive Detection of Peritoneal Metastasis.
    Wen Q; Zhang Y; Li C; Ling S; Yang X; Chen G; Yang Y; Wang Q
    Angew Chem Int Ed Engl; 2019 Aug; 58(32):11001-11006. PubMed ID: 31162792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.