These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 31620763)

  • 1. Bonding rearrangements in organometallic reactions: from orbitals to curly arrows.
    Sciortino G; Lledós A; Vidossich P
    Dalton Trans; 2019 Nov; 48(42):15740-15752. PubMed ID: 31620763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Curly arrows, electron flow, and reaction mechanisms from the perspective of the bonding evolution theory.
    Andrés J; González-Navarrete P; Safont VS; Silvi B
    Phys Chem Chem Phys; 2017 Nov; 19(43):29031-29046. PubMed ID: 29077108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculating curly arrows from ab initio wavefunctions.
    Liu Y; Kilby P; Frankcombe TJ; Schmidt TW
    Nat Commun; 2018 Apr; 9(1):1436. PubMed ID: 29651029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Curly arrows meet electron density transfers in chemical reaction mechanisms: from electron localization function (ELF) analysis to valence-shell electron-pair repulsion (VSEPR) inspired interpretation.
    Andrés J; Berski S; Silvi B
    Chem Commun (Camb); 2016 Jul; 52(53):8183-95. PubMed ID: 27218123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron flow in reaction mechanisms--revealed from first principles.
    Knizia G; Klein JE
    Angew Chem Int Ed Engl; 2015 Apr; 54(18):5518-22. PubMed ID: 25737294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the outside looking in: rethinking the molecular mechanism of 1,3-dipolar cycloadditions from the perspective of bonding evolution theory. The reaction between cyclic nitrones and ethyl acrylate.
    Adjieufack AI; Ndassa IM; Patouossa I; Mbadcam JK; Safont VS; Oliva M; Andrés J
    Phys Chem Chem Phys; 2017 Jul; 19(28):18288-18302. PubMed ID: 28561101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epoxidation of Alkenes by Peracids: From Textbook Mechanisms to a Quantum Mechanically Derived Curly-Arrow Depiction.
    Klein JEMN; Knizia G; Rzepa HS
    ChemistryOpen; 2019 Oct; 8(10):1244-1250. PubMed ID: 31592408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An examination of the nature of localized molecular orbitals and their value in understanding various phenomena that occur in organic chemistry.
    Stewart JJP
    J Mol Model; 2018 Dec; 25(1):7. PubMed ID: 30588537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A bonding evolution analysis for the thermal Claisen rearrangement: an experimental and theoretical exercise for testing the electron density flow.
    González-Navarrete P; Andrés J; Safont VS
    Phys Chem Chem Phys; 2017 Dec; 20(1):535-541. PubMed ID: 29220047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoinduced hydrogen-bonding dynamics.
    Chu TS; Xu J
    J Mol Model; 2016 Sep; 22(9):200. PubMed ID: 27491849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deciphering the Curly Arrow Representation and Electron Flow for the 1,3-Dipolar Rearrangement between Acetonitrile Oxide and (1
    Adjieufack AI; Nana CN; Ketcha-Mbadcam J; Mbouombouo Ndassa I; Andrés J; Oliva M; Safont VS
    ACS Omega; 2020 Sep; 5(35):22215-22225. PubMed ID: 32923779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas phase studies of the Pesci decarboxylation reaction: synthesis, structure, and unimolecular and bimolecular reactivity of organometallic ions.
    O'Hair RA; Rijs NJ
    Acc Chem Res; 2015 Feb; 48(2):329-40. PubMed ID: 25594228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical reaction dynamics beyond the Born-Oppenheimer approximation.
    Butler LJ
    Annu Rev Phys Chem; 1998; 49():125-71. PubMed ID: 15012427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study of structural, spectroscopic and reaction properties of trans-bis(imido) uranium(VI) complexes.
    Guo YR; Wu Q; Odoh SO; Schreckenbach G; Pan QJ
    Inorg Chem; 2013 Aug; 52(15):9143-52. PubMed ID: 23834342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of localised orbitals for the bonding and mechanistic analysis of organometallic compounds.
    Vidossich P; Lledós A
    Dalton Trans; 2014 Aug; 43(29):11145-51. PubMed ID: 24681773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic quantum fluxes during pericyclic reactions exemplified for the Cope rearrangement of semibullvalene.
    Andrae D; Barth I; Bredtmann T; Hege HC; Manz J; Marquardt F; Paulus B
    J Phys Chem B; 2011 May; 115(18):5476-83. PubMed ID: 21261309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic structure of 3d[M(H2O)6](3+) ions from Sc(III) to Fe(III): a quantum mechanical study based on DFT computations and natural bond orbital analyses.
    Kallies B; Meier R
    Inorg Chem; 2001 Jun; 40(13):3101-12. PubMed ID: 11399179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate theoretical chemistry with coupled pair models.
    Neese F; Hansen A; Wennmohs F; Grimme S
    Acc Chem Res; 2009 May; 42(5):641-8. PubMed ID: 19296607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding and Quantifying London Dispersion Effects in Organometallic Complexes.
    Bursch M; Caldeweyher E; Hansen A; Neugebauer H; Ehlert S; Grimme S
    Acc Chem Res; 2019 Jan; 52(1):258-266. PubMed ID: 30586286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical nature of interactions in Zn(II) complexes with 2,2'-bipyridyl: quantum theory of atoms in molecules (QTAIM), interacting quantum atoms (IQA), noncovalent interactions (NCI), and extended transition state coupled with natural orbitals for chemical valence (ETS-NOCV) comparative studies.
    Cukrowski I; de Lange JH; Mitoraj M
    J Phys Chem A; 2014 Jan; 118(3):623-37. PubMed ID: 24377828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.