These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
324 related articles for article (PubMed ID: 31620764)
1. Electrochemical paper-based devices: sensing approaches and progress toward practical applications. Noviana E; McCord CP; Clark KM; Jang I; Henry CS Lab Chip; 2020 Jan; 20(1):9-34. PubMed ID: 31620764 [TBL] [Abstract][Full Text] [Related]
2. Engineering strategies for enhancing the performance of electrochemical paper-based analytical devices. Baharfar M; Rahbar M; Tajik M; Liu G Biosens Bioelectron; 2020 Nov; 167():112506. PubMed ID: 32823207 [TBL] [Abstract][Full Text] [Related]
9. Recent advances in microfluidic paper-based electrochemiluminescence analytical devices for point-of-care testing applications. Chinnadayyala SR; Park J; Le HTN; Santhosh M; Kadam AN; Cho S Biosens Bioelectron; 2019 Feb; 126():68-81. PubMed ID: 30391911 [TBL] [Abstract][Full Text] [Related]
10. Silicone glue-based graphite ink incorporated on paper platform as an affordable approach to construct stable electrochemical sensors. Castro LF; Silva-Neto HA; Sousa LR; de Araujo WR; Coltro WKT Talanta; 2023 Jan; 251():123812. PubMed ID: 35961083 [TBL] [Abstract][Full Text] [Related]
11. Paper-based potentiometric ion sensing. Lan WJ; Zou XU; Hamedi MM; Hu J; Parolo C; Maxwell EJ; Bühlmann P; Whitesides GM Anal Chem; 2014 Oct; 86(19):9548-53. PubMed ID: 25197763 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of paper-based analytical devices using a PLA 3D-printed stencil for electrochemical determination of chloroquine and escitalopram. Silva MKL; Sousa GS; Simoes RP; Cesarino I J Solid State Electrochem; 2022; 26(2):581-586. PubMed ID: 34751209 [TBL] [Abstract][Full Text] [Related]
13. Functional Nanomaterials and Nanostructures Enhancing Electrochemical Biosensors and Lab-on-a-Chip Performances: Recent Progress, Applications, and Future Perspective. Wongkaew N; Simsek M; Griesche C; Baeumner AJ Chem Rev; 2019 Jan; 119(1):120-194. PubMed ID: 30247026 [TBL] [Abstract][Full Text] [Related]
14. Paper based microfluidics: A forecast toward the most affordable and rapid point-of-care devices. Sinha A; Basu M; Chandna P Prog Mol Biol Transl Sci; 2022; 186(1):109-158. PubMed ID: 35033281 [TBL] [Abstract][Full Text] [Related]
15. An Assay System for Point-of-Care Diagnosis of Tuberculosis using Commercially Manufactured PCB Technology. Evans D; Papadimitriou KI; Greathead L; Vasilakis N; Pantelidis P; Kelleher P; Morgan H; Prodromakis T Sci Rep; 2017 Apr; 7(1):685. PubMed ID: 28386077 [TBL] [Abstract][Full Text] [Related]
16. Low-tech vs. high-tech approaches in μPADs as a result of contrasting needs and capabilities of developed and developing countries focusing on diagnostics and point-of-care testing. Rypar T; Bezdekova J; Pavelicova K; Vodova M; Adam V; Vaculovicova M; Macka M Talanta; 2024 Jan; 266(Pt 1):124911. PubMed ID: 37536103 [TBL] [Abstract][Full Text] [Related]
17. An automated fast-flow/delayed paper-based platform for the simultaneous electrochemical detection of hepatitis B virus and hepatitis C virus core antigen. Boonkaew S; Yakoh A; Chuaypen N; Tangkijvanich P; Rengpipat S; Siangproh W; Chailapakul O Biosens Bioelectron; 2021 Dec; 193():113543. PubMed ID: 34416431 [TBL] [Abstract][Full Text] [Related]
19. Point of care testing: The impact of nanotechnology. Syedmoradi L; Daneshpour M; Alvandipour M; Gomez FA; Hajghassem H; Omidfar K Biosens Bioelectron; 2017 Jan; 87():373-387. PubMed ID: 27589400 [TBL] [Abstract][Full Text] [Related]