These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 31620962)

  • 1. The effects of inorganic phosphate on muscle force development and energetics: challenges in modelling related to experimental uncertainties.
    MÃ¥nsson A
    J Muscle Res Cell Motil; 2021 Mar; 42(1):33-46. PubMed ID: 31620962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of inorganic phosphate on the force and number of myosin cross-bridges during the isometric contraction of permeabilized muscle fibers from rabbit psoas.
    Caremani M; Dantzig J; Goldman YE; Lombardi V; Linari M
    Biophys J; 2008 Dec; 95(12):5798-808. PubMed ID: 18835889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct observation of phosphate inhibiting the force-generating capacity of a miniensemble of Myosin molecules.
    Debold EP; Walcott S; Woodward M; Turner MA
    Biophys J; 2013 Nov; 105(10):2374-84. PubMed ID: 24268149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for increased low force cross-bridge population in shortening skinned skeletal muscle fibers: implications for actomyosin kinetics.
    Iwamoto H
    Biophys J; 1995 Sep; 69(3):1022-35. PubMed ID: 8519957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The efficiency of contraction in rabbit skeletal muscle fibres, determined from the rate of release of inorganic phosphate.
    He ZH; Chillingworth RK; Brune M; Corrie JE; Webb MR; Ferenczi MA
    J Physiol; 1999 Jun; 517 ( Pt 3)(Pt 3):839-54. PubMed ID: 10358123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A kinetic model that explains the effect of inorganic phosphate on the mechanics and energetics of isometric contraction of fast skeletal muscle.
    Linari M; Caremani M; Lombardi V
    Proc Biol Sci; 2010 Jan; 277(1678):19-27. PubMed ID: 19812088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic coupling of phosphate release, force generation and rate-limiting steps in the cross-bridge cycle.
    Stehle R; Tesi C
    J Muscle Res Cell Motil; 2017 Aug; 38(3-4):275-289. PubMed ID: 28918606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain-dependent modulation of phosphate transients in rabbit skeletal muscle fibers.
    Homsher E; Lacktis J; Regnier M
    Biophys J; 1997 Apr; 72(4):1780-91. PubMed ID: 9083682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increase in ATP consumption during shortening in skinned fibres from rabbit psoas muscle: effects of inorganic phosphate.
    Potma EJ; Stienen GJ
    J Physiol; 1996 Oct; 496 ( Pt 1)(Pt 1):1-12. PubMed ID: 8910191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-bridge scheme and force per cross-bridge state in skinned rabbit psoas muscle fibers.
    Kawai M; Zhao Y
    Biophys J; 1993 Aug; 65(2):638-51. PubMed ID: 8218893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two step mechanism of phosphate release and the mechanism of force generation in chemically skinned fibers of rabbit psoas muscle.
    Kawai M; Halvorson HR
    Biophys J; 1991 Feb; 59(2):329-42. PubMed ID: 2009356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Ca2+ on the kinetics of phosphate release in skeletal muscle.
    Walker JW; Lu Z; Moss RL
    J Biol Chem; 1992 Feb; 267(4):2459-66. PubMed ID: 1733945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ATP hydrolysis and phosphate release steps control the time course of force development in rabbit skeletal muscle.
    Sleep J; Irving M; Burton K
    J Physiol; 2005 Mar; 563(Pt 3):671-87. PubMed ID: 15611023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are Force Enhancement after Stretch and Muscle Fatigue Due to Effects of Elevated Inorganic Phosphate and Low Calcium on Cross Bridge Kinetics?
    Degens H; Jones DA
    Medicina (Kaunas); 2020 May; 56(5):. PubMed ID: 32443826
    [No Abstract]   [Full Text] [Related]  

  • 15. Kinetics of regeneration of cross-bridge power stroke in shortening muscle.
    Piazzesi G; Linari M; Lombardi V
    Adv Exp Med Biol; 1993; 332():691-700; discussion 700-1. PubMed ID: 8109379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Location and Rate of the Phosphate Release Step in the Muscle Cross-Bridge Cycle.
    Offer G; Ranatunga KW
    Biophys J; 2020 Oct; 119(8):1501-1512. PubMed ID: 33010234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inorganic phosphate affects the pCa-force relationship more than the pCa-ATPase by increasing the rate of dissociation of force generating cross-bridges in skinned fibers from both EDL and soleus muscles of the rat.
    Kerrick WG; Xu Y
    J Muscle Res Cell Motil; 2004; 25(2):107-17. PubMed ID: 15360126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of cross-bridge compliance on the force-velocity relationship and muscle power output.
    Fenwick AJ; Wood AM; Tanner BCW
    PLoS One; 2017; 12(12):e0190335. PubMed ID: 29284062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling between phosphate release and force generation in muscle actomyosin.
    Takagi Y; Shuman H; Goldman YE
    Philos Trans R Soc Lond B Biol Sci; 2004 Dec; 359(1452):1913-20. PubMed ID: 15647167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of inorganic phosphate on cross-bridge kinetics at different activation levels in skinned guinea-pig smooth muscle.
    Osterman A; Arner A
    J Physiol; 1995 Apr; 484 ( Pt 2)(Pt 2):369-83. PubMed ID: 7602532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.