These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Fungal symbionts alter plant responses to global change. Kivlin SN; Emery SM; Rudgers JA Am J Bot; 2013 Jul; 100(7):1445-57. PubMed ID: 23757444 [TBL] [Abstract][Full Text] [Related]
7. Dark septate endophytes: mutualism from by-products? Ruotsalainen AL; Kauppinen M; Wäli PR; Saikkonen K; Helander M; Tuomi J Trends Plant Sci; 2022 Mar; 27(3):247-254. PubMed ID: 34756535 [TBL] [Abstract][Full Text] [Related]
8. Fungal Symbionts Enhance N-Uptake for Antarctic Plants Even in Non-N Limited Soils. Acuña-Rodríguez IS; Galán A; Torres-Díaz C; Atala C; Molina-Montenegro MA Front Microbiol; 2020; 11():575563. PubMed ID: 33193189 [TBL] [Abstract][Full Text] [Related]
9. A shift from arbuscular mycorrhizal to dark septate endophytic colonization in Deschampsia flexuosa roots occurs along primary successional gradient. Huusko K; Ruotsalainen AL; Markkola AM Mycorrhiza; 2017 Feb; 27(2):129-138. PubMed ID: 27761663 [TBL] [Abstract][Full Text] [Related]
10. Invited review: climate change impacts in polar regions: lessons from Antarctic moss bank archives. Royles J; Griffiths H Glob Chang Biol; 2015 Mar; 21(3):1041-57. PubMed ID: 25336089 [TBL] [Abstract][Full Text] [Related]
11. In situ warming in the Antarctic: effects on growth and photosynthesis in Antarctic vascular plants. Sáez PL; Cavieres LA; Galmés J; Gil-Pelegrín E; Peguero-Pina JJ; Sancho-Knapik D; Vivas M; Sanhueza C; Ramírez CF; Rivera BK; Corcuera LJ; Bravo LA New Phytol; 2018 Jun; 218(4):1406-1418. PubMed ID: 29682746 [TBL] [Abstract][Full Text] [Related]
12. Vascular plants as bioindicators of regional warming in Antarctica. Smith RI Oecologia; 1994 Sep; 99(3-4):322-328. PubMed ID: 28313887 [TBL] [Abstract][Full Text] [Related]
13. Contrasting thermal acclimation of leaf dark respiration and photosynthesis of Antarctic vascular plant species exposed to nocturnal warming. Sanhueza C; Fuentes F; Cortés D; Bascunan-Godoy L; Sáez PL; Bravo LA; Cavieres LA Physiol Plant; 2019 Oct; 167(2):205-216. PubMed ID: 30467866 [TBL] [Abstract][Full Text] [Related]
14. [Advances in mechanisms of nutrient exchange between mycorrhizal fungi and host plants]. Feng H; Meng PP; Dou Q; Zhang SX; Wang HH; Wang CY Ying Yong Sheng Tai Xue Bao; 2019 Oct; 30(10):3596-3604. PubMed ID: 31621248 [TBL] [Abstract][Full Text] [Related]
15. Passive warming effect on soil microbial community and humic substance degradation in maritime Antarctic region. Kim D; Park HJ; Kim JH; Youn UJ; Yang YH; Casanova-Katny A; Vargas CM; Venegas EZ; Park H; Hong SG J Basic Microbiol; 2018 Jun; 58(6):513-522. PubMed ID: 29570816 [TBL] [Abstract][Full Text] [Related]
18. Vegetation drives the response of the active fraction of the rhizosphere microbial communities to soil warming in Antarctic vascular plants. Parada-Pozo G; Bravo LA; Sáez PL; Cavieres LA; Reyes-Díaz M; Abades S; Alfaro FD; De la Iglesia R; Trefault N FEMS Microbiol Ecol; 2022 Oct; 98(11):. PubMed ID: 36040342 [TBL] [Abstract][Full Text] [Related]
19. Genotypic variation in the response of chickpea to arbuscular mycorrhizal fungi and non-mycorrhizal fungal endophytes. Bazghaleh N; Hamel C; Gan Y; Tar'an B; Knight JD Can J Microbiol; 2018 Apr; 64(4):265-275. PubMed ID: 29390194 [TBL] [Abstract][Full Text] [Related]
20. Seasonality of arbuscular mycorrhizal symbiosis and dark septate endophytes in a grassland site in southwest China. Lingfei L; Anna Y; Zhiwei Z FEMS Microbiol Ecol; 2005 Nov; 54(3):367-73. PubMed ID: 16332334 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]