BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 31621535)

  • 1. X-ray fluorescence sorting of non-ferrous metal fractions from municipal solid waste incineration bottom ash processing depending on particle surface properties.
    Pfandl K; Küppers B; Scheiber S; Stockinger G; Holzer J; Pomberger R; Antrekowitsch H; Vollprecht D
    Waste Manag Res; 2020 Feb; 38(2):111-121. PubMed ID: 31621535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling of material recovery from waste incineration bottom ash.
    Huber F
    Waste Manag; 2020 Mar; 105():61-72. PubMed ID: 32028102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid residues from Italian municipal solid waste incinerators: A source for "critical" raw materials.
    Funari V; Braga R; Bokhari SN; Dinelli E; Meisel T
    Waste Manag; 2015 Nov; 45():206-16. PubMed ID: 25512234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of metal-abundant high-density particles in municipal solid waste incineration bottom ash by a series of processes: Sieving, magnetic separation, air table sorting, and milling.
    Back S; Ueda K; Sakanakura H
    Waste Manag; 2020 Jul; 112():11-19. PubMed ID: 32480299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of heavy metal, rare, precious, and metallic element content in bottom ash from municipal solid waste incineration in Tehran based on particle size.
    Beikmohammadi M; Yaghmaeian K; Nabizadeh R; Mahvi AH
    Sci Rep; 2023 Sep; 13(1):16044. PubMed ID: 37749159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. To fractionate municipal solid waste incineration bottom ash: Key for utilisation?
    Sormunen LA; Rantsi R
    Waste Manag Res; 2015 Nov; 33(11):995-1004. PubMed ID: 26330401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The environmental performance of enhanced metal recovery from dry municipal solid waste incineration bottom ash.
    Mehr J; Haupt M; Skutan S; Morf L; Raka Adrianto L; Weibel G; Hellweg S
    Waste Manag; 2021 Jan; 119():330-341. PubMed ID: 33125941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of recoverable metal resources and harmful elements depending on particle size and density in municipal solid waste incineration bottom ash from dry discharge system.
    Back S; Sakanakura H
    Waste Manag; 2021 May; 126():652-663. PubMed ID: 33872974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bottom ash derived from municipal solid waste and sewage sludge co-incineration: First results about characterization and reuse.
    Assi A; Bilo F; Federici S; Zacco A; Depero LE; Bontempi E
    Waste Manag; 2020 Oct; 116():147-156. PubMed ID: 32799096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash.
    Allegrini E; Vadenbo C; Boldrin A; Astrup TF
    J Environ Manage; 2015 Mar; 151():132-43. PubMed ID: 25555136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete determination of the material composition of municipal solid waste incineration bottom ash.
    Huber F; Blasenbauer D; Aschenbrenner P; Fellner J
    Waste Manag; 2020 Feb; 102():677-685. PubMed ID: 31790926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes.
    Allegrini E; Maresca A; Olsson ME; Holtze MS; Boldrin A; Astrup TF
    Waste Manag; 2014 Sep; 34(9):1627-36. PubMed ID: 24889793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical composition and leachability of differently sized material fractions of municipal solid waste incineration bottom ash.
    Huber F; Blasenbauer D; Aschenbrenner P; Fellner J
    Waste Manag; 2019 Jul; 95():593-603. PubMed ID: 31351646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilization and volume reduction of heavy metals in municipal solid waste fly ash using nano-size calcium and iron-dispersed reagent.
    Mallampati SR; Mitoma Y; Simion C; Lee BH
    J Air Waste Manag Assoc; 2015 Oct; 65(10):1247-55. PubMed ID: 26230452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaching optimization of municipal solid waste incineration ash for resource recovery: A case study of Cu, Zn, Pb and Cd.
    Tang J; Steenari BM
    Waste Manag; 2016 Feb; 48():315-322. PubMed ID: 26463013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Innovative treatment trains of bottom ash (BA) from municipal solid waste incineration (MSWI) in Germany.
    Holm O; Simon FG
    Waste Manag; 2017 Jan; 59():229-236. PubMed ID: 27625178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy metal mobility and valuable contents of processed municipal solid waste incineration residues from Southwestern Germany.
    Abramov S; He J; Wimmer D; Lemloh ML; Muehe EM; Gann B; Roehm E; Kirchhof R; Babechuk MG; Schoenberg R; Thorwarth H; Helle T; Kappler A
    Waste Manag; 2018 Sep; 79():735-743. PubMed ID: 30343806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining sieving and washing, a way to treat MSWI boiler fly ash.
    De Boom A; Degrez M
    Waste Manag; 2015 May; 39():179-88. PubMed ID: 25736808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of enhanced metal recovery on the recycling potential of MSWI bottom ash fractions in various legal frameworks.
    Glauser A; Weibel G; Eggenberger U
    Waste Manag Res; 2021 Dec; 39(12):1459-1470. PubMed ID: 34407717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation and characterization of magnetic fractions from waste-to-energy bottom ash with an emphasis on the leachability of heavy metals.
    Wei Y; Mei X; Shi D; Liu G; Li L; Shimaoka T
    Environ Sci Pollut Res Int; 2017 Jun; 24(17):14970-14979. PubMed ID: 28488148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.