BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 31622007)

  • 1. Host-induced gene silencing of BcTOR in Botrytis cinerea enhances plant resistance to grey mould.
    Xiong F; Liu M; Zhuo F; Yin H; Deng K; Feng S; Liu Y; Luo X; Feng L; Zhang S; Li Z; Ren M
    Mol Plant Pathol; 2019 Dec; 20(12):1722-1739. PubMed ID: 31622007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Many Shades of Grey in Botrytis-Host Plant Interactions.
    Veloso J; van Kan JAL
    Trends Plant Sci; 2018 Jul; 23(7):613-622. PubMed ID: 29724660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant signalling components EDS1 and SGT1 enhance disease caused by the necrotrophic pathogen Botrytis cinerea.
    El Oirdi M; Bouarab K
    New Phytol; 2007; 175(1):131-139. PubMed ID: 17547673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection.
    Wang M; Weiberg A; Lin FM; Thomma BP; Huang HD; Jin H
    Nat Plants; 2016 Sep; 2():16151. PubMed ID: 27643635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double-stranded RNA targeting fungal ergosterol biosynthesis pathway controls Botrytis cinerea and postharvest grey mould.
    Duanis-Assaf D; Galsurker O; Davydov O; Maurer D; Feygenberg O; Sagi M; Poverenov E; Fluhr R; Alkan N
    Plant Biotechnol J; 2022 Jan; 20(1):226-237. PubMed ID: 34520611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silencing of DND1 in potato and tomato impedes conidial germination, attachment and hyphal growth of Botrytis cinerea.
    Sun K; van Tuinen A; van Kan JAL; Wolters AA; Jacobsen E; Visser RGF; Bai Y
    BMC Plant Biol; 2017 Dec; 17(1):235. PubMed ID: 29212470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel Botrytis cinerea-specific gene BcHBF1 enhances virulence of the grey mould fungus via promoting host penetration and invasive hyphal development.
    Liu Y; Liu JK; Li GH; Zhang MZ; Zhang YY; Wang YY; Hou J; Yang S; Sun J; Qin QM
    Mol Plant Pathol; 2019 May; 20(5):731-747. PubMed ID: 31008573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea.
    Petrasch S; Knapp SJ; van Kan JAL; Blanco-Ulate B
    Mol Plant Pathol; 2019 Jun; 20(6):877-892. PubMed ID: 30945788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retrotransposons as pathogenicity factors of the plant pathogenic fungus Botrytis cinerea.
    Porquier A; Tisserant C; Salinas F; Glassl C; Wange L; Enard W; Hauser A; Hahn M; Weiberg A
    Genome Biol; 2021 Aug; 22(1):225. PubMed ID: 34399815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic and molecular landscapes of the generalist phytopathogen Botrytis cinerea.
    Singh R; Caseys C; Kliebenstein DJ
    Mol Plant Pathol; 2024 Jan; 25(1):e13404. PubMed ID: 38037862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome analysis and functional validation reveal a novel gene, BcCGF1, that enhances fungal virulence by promoting infection-related development and host penetration.
    Zhang MZ; Sun CH; Liu Y; Feng HQ; Chang HW; Cao SN; Li GH; Yang S; Hou J; Zhu-Salzman K; Zhang H; Qin QM
    Mol Plant Pathol; 2020 Jun; 21(6):834-853. PubMed ID: 32301267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant nitrogen supply affects the Botrytis cinerea infection process and modulates known and novel virulence factors.
    Soulie MC; Koka SM; Floch K; Vancostenoble B; Barbe D; Daviere A; Soubigou-Taconnat L; Brunaud V; Poussereau N; Loisel E; Devallee A; Expert D; Fagard M
    Mol Plant Pathol; 2020 Nov; 21(11):1436-1450. PubMed ID: 32939948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small RNA Extraction and Quantification of Isolated Fungal Cells from Plant Tissue by the Sequential Protoplastation.
    Cai Q; Jin H
    Methods Mol Biol; 2021; 2170():219-229. PubMed ID: 32797462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The glutaredoxin ATGRXS13 is required to facilitate Botrytis cinerea infection of Arabidopsis thaliana plants.
    La Camera S; L'haridon F; Astier J; Zander M; Abou-Mansour E; Page G; Thurow C; Wendehenne D; Gatz C; Métraux JP; Lamotte O
    Plant J; 2011 Nov; 68(3):507-19. PubMed ID: 21756272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways.
    Weiberg A; Wang M; Lin FM; Zhao H; Zhang Z; Kaloshian I; Huang HD; Jin H
    Science; 2013 Oct; 342(6154):118-23. PubMed ID: 24092744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Botrytis small RNA Bc-siR37 suppresses plant defense genes by cross-kingdom RNAi.
    Wang M; Weiberg A; Dellota E; Yamane D; Jin H
    RNA Biol; 2017 Apr; 14(4):421-428. PubMed ID: 28267415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological control of Botrytis gray mould on tomato cultivated in greenhouse.
    Fiume F; Fiume G
    Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):897-908. PubMed ID: 17390837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Autophagy Gene
    Ren W; Liu N; Sang C; Shi D; Zhou M; Chen C; Qin Q; Chen W
    Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29572212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vapours from plant essential oils to manage tomato grey mould caused by Botrytiscinerea.
    Hong JK; Sook Jo Y; Jeong DH; Woo SM; Park JY; Yoon DJ; Lee YH; Choi SH; Park CJ
    Fungal Biol; 2023 Apr; 127(4):985-996. PubMed ID: 37024158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in the Study of the Plant Pathogenic Fungus Botrytis cinerea and its Interaction with the Environment.
    Castillo L; Plaza V; Larrondo LF; Canessa P
    Curr Protein Pept Sci; 2017; 18(10):976-989. PubMed ID: 27526927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.