These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31622352)

  • 1. Algorithmic differentiation improves the computational efficiency of OpenSim-based trajectory optimization of human movement.
    Falisse A; SerrancolĂ­ G; Dembia CL; Gillis J; De Groote F
    PLoS One; 2019; 14(10):e0217730. PubMed ID: 31622352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB.
    Lee LF; Umberger BR
    PeerJ; 2016; 4():e1638. PubMed ID: 26835184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional data-tracking dynamic optimization simulations of human locomotion generated by direct collocation.
    Lin YC; Pandy MG
    J Biomech; 2017 Jul; 59():1-8. PubMed ID: 28583674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Methods for Predicting Movement Biomechanics Based Upon Optimal Control Theory with Implementation in OpenSim.
    Porsa S; Lin YC; Pandy MG
    Ann Biomed Eng; 2016 Aug; 44(8):2542-2557. PubMed ID: 26715209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid predictive simulations with complex musculoskeletal models suggest that diverse healthy and pathological human gaits can emerge from similar control strategies.
    Falisse A; SerrancolĂ­ G; Dembia CL; Gillis J; Jonkers I; De Groote F
    J R Soc Interface; 2019 Aug; 16(157):20190402. PubMed ID: 31431186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OpenSim Moco: Musculoskeletal optimal control.
    Dembia CL; Bianco NA; Falisse A; Hicks JL; Delp SL
    PLoS Comput Biol; 2020 Dec; 16(12):e1008493. PubMed ID: 33370252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement.
    Seth A; Hicks JL; Uchida TK; Habib A; Dembia CL; Dunne JJ; Ong CF; DeMers MS; Rajagopal A; Millard M; Hamner SR; Arnold EM; Yong JR; Lakshmikanth SK; Sherman MA; Ku JP; Delp SL
    PLoS Comput Biol; 2018 Jul; 14(7):e1006223. PubMed ID: 30048444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive Simulations of Neuromuscular Coordination and Joint-Contact Loading in Human Gait.
    Lin YC; Walter JP; Pandy MG
    Ann Biomed Eng; 2018 Aug; 46(8):1216-1227. PubMed ID: 29671152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A platform for dynamic simulation and control of movement based on OpenSim and MATLAB.
    Mansouri M; Reinbolt JA
    J Biomech; 2012 May; 45(8):1517-21. PubMed ID: 22464351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. nmsBuilder: Freeware to create subject-specific musculoskeletal models for OpenSim.
    Valente G; Crimi G; Vanella N; Schileo E; Taddei F
    Comput Methods Programs Biomed; 2017 Dec; 152():85-92. PubMed ID: 29054263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OpenSim: open-source software to create and analyze dynamic simulations of movement.
    Delp SL; Anderson FC; Arnold AS; Loan P; Habib A; John CT; Guendelman E; Thelen DG
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):1940-50. PubMed ID: 18018689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-stepping techniques to enable the simulation of bursting behavior in a physiologically realistic computational islet.
    Khuvis S; Gobbert MK; Peercy BE
    Math Biosci; 2015 May; 263():1-17. PubMed ID: 25688913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification?
    Valente G; Pitto L; Testi D; Seth A; Delp SL; Stagni R; Viceconti M; Taddei F
    PLoS One; 2014; 9(11):e112625. PubMed ID: 25390896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient trajectory optimization for curved running using a 3D musculoskeletal model with implicit dynamics.
    Nitschke M; Dorschky E; Heinrich D; Schlarb H; Eskofier BM; Koelewijn AD; van den Bogert AJ
    Sci Rep; 2020 Oct; 10(1):17655. PubMed ID: 33077752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Direct Collocation Optimal Control Problem Formulations for Solving the Muscle Redundancy Problem.
    De Groote F; Kinney AL; Rao AV; Fregly BJ
    Ann Biomed Eng; 2016 Oct; 44(10):2922-2936. PubMed ID: 27001399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bilevel Optimization for Cost Function Determination in Dynamic Simulation of Human Gait.
    Nguyen VQ; Johnson RT; Sup FC; Umberger BR
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1426-1435. PubMed ID: 31199264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A direct collocation framework for optimal control simulation of pedaling using OpenSim.
    Park S; Caldwell GE; Umberger BR
    PLoS One; 2022; 17(2):e0264346. PubMed ID: 35192643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perspective on musculoskeletal modelling and predictive simulations of human movement to assess the neuromechanics of gait.
    De Groote F; Falisse A
    Proc Biol Sci; 2021 Mar; 288(1946):20202432. PubMed ID: 33653141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic motion planning of 3D human locomotion using gradient-based optimization.
    Kim HJ; Wang Q; Rahmatalla S; Swan CC; Arora JS; Abdel-Malek K; Assouline JG
    J Biomech Eng; 2008 Jun; 130(3):031002. PubMed ID: 18532851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arm swing in human walking: what is their drive?
    Goudriaan M; Jonkers I; van Dieen JH; Bruijn SM
    Gait Posture; 2014 Jun; 40(2):321-6. PubMed ID: 24865637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.