BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 31622665)

  • 1. Dynamics of sleep spindles and coupling to slow oscillations following motor learning in adult mice.
    Kam K; Pettibone WD; Shim K; Chen RK; Varga AW
    Neurobiol Learn Mem; 2019 Dec; 166():107100. PubMed ID: 31622665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sleep spindle maturity promotes slow oscillation-spindle coupling across child and adolescent development.
    Joechner AK; Hahn MA; Gruber G; Hoedlmoser K; Werkle-Bergner M
    Elife; 2023 Nov; 12():. PubMed ID: 37999945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Degree of Nesting between Spindles and Slow Oscillations Modulates Neural Synchrony.
    Silversmith DB; Lemke SM; Egert D; Berke JD; Ganguly K
    J Neurosci; 2020 Jun; 40(24):4673-4684. PubMed ID: 32371605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow oscillation-spindle coupling predicts enhanced memory formation from childhood to adolescence.
    Hahn MA; Heib D; Schabus M; Hoedlmoser K; Helfrich RF
    Elife; 2020 Jun; 9():. PubMed ID: 32579108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An infant sleep electroencephalographic marker of thalamocortical connectivity predicts behavioral outcome in late infancy.
    Jaramillo V; Schoch SF; Markovic A; Kohler M; Huber R; Lustenberger C; Kurth S
    Neuroimage; 2023 Apr; 269():119924. PubMed ID: 36739104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling of gamma band activity to sleep spindle oscillations - a combined EEG/MEG study.
    Weber FD; Supp GG; Klinzing JG; Mölle M; Engel AK; Born J
    Neuroimage; 2021 Jan; 224():117452. PubMed ID: 33059050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beyond spindles: interactions between sleep spindles and boundary frequencies during cued reactivation of motor memory representations.
    Laventure S; Pinsard B; Lungu O; Carrier J; Fogel S; Benali H; Lina JM; Boutin A; Doyon J
    Sleep; 2018 Sep; 41(9):. PubMed ID: 30137521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sleep-slow oscillation-spindle coupling precedes spindle-ripple coupling during development.
    Fechner J; Contreras MP; Zorzo C; Shan X; Born J; Inostroza M
    Sleep; 2024 May; 47(5):. PubMed ID: 38452190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of γ and spindle-range power by slow oscillations in scalp sleep EEG of children.
    Piantoni G; Astill RG; Raymann RJ; Vis JC; Coppens JE; Van Someren EJ
    Int J Psychophysiol; 2013 Aug; 89(2):252-8. PubMed ID: 23403325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale structure and individual fingerprints of locally coupled sleep oscillations.
    Cox R; Mylonas DS; Manoach DS; Stickgold R
    Sleep; 2018 Dec; 41(12):. PubMed ID: 30184179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordination of Slow Waves With Sleep Spindles Predicts Sleep-Dependent Memory Consolidation in Schizophrenia.
    Demanuele C; Bartsch U; Baran B; Khan S; Vangel MG; Cox R; Hämäläinen M; Jones MW; Stickgold R; Manoach DS
    Sleep; 2017 Jan; 40(1):. PubMed ID: 28364465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sleep spindles in humans: insights from intracranial EEG and unit recordings.
    Andrillon T; Nir Y; Staba RJ; Ferrarelli F; Cirelli C; Tononi G; Fried I
    J Neurosci; 2011 Dec; 31(49):17821-34. PubMed ID: 22159098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tactile stimulation during sleep alters slow oscillation and spindle densities but not motor skill.
    Pereira SI; Beijamini F; Weber FD; Vincenzi RA; da Silva FA; Louzada FM
    Physiol Behav; 2017 Feb; 169():59-68. PubMed ID: 27887994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic coupling between slow waves and sleep spindles during slow wave sleep in humans is modulated by functional pre-sleep activation.
    Yordanova J; Kirov R; Verleger R; Kolev V
    Sci Rep; 2017 Nov; 7(1):14496. PubMed ID: 29101344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sleep Spindles as Facilitators of Memory Formation and Learning.
    Ulrich D
    Neural Plast; 2016; 2016():1796715. PubMed ID: 27119026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nap sleep spindle correlates of intelligence.
    Ujma PP; Bódizs R; Gombos F; Stintzing J; Konrad BN; Genzel L; Steiger A; Dresler M
    Sci Rep; 2015 Nov; 5():17159. PubMed ID: 26607963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Closed-Loop Slow-Wave tACS Improves Sleep-Dependent Long-Term Memory Generalization by Modulating Endogenous Oscillations.
    Ketz N; Jones AP; Bryant NB; Clark VP; Pilly PK
    J Neurosci; 2018 Aug; 38(33):7314-7326. PubMed ID: 30037830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spindle activity phase-locked to sleep slow oscillations.
    Klinzing JG; Mölle M; Weber F; Supp G; Hipp JF; Engel AK; Born J
    Neuroimage; 2016 Jul; 134():607-616. PubMed ID: 27103135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of corpus callosum in sleep spindle synchronization and coupling with slow waves.
    Bernardi G; Avvenuti G; Cataldi J; Lattanzi S; Ricciardi E; Polonara G; Silvestrini M; Siclari F; Fabri M; Bellesi M
    Brain Commun; 2021; 3(2):fcab108. PubMed ID: 34164621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Grouping of MEG gamma oscillations by EEG sleep spindles.
    Ayoub A; Mölle M; Preissl H; Born J
    Neuroimage; 2012 Jan; 59(2):1491-500. PubMed ID: 21893206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.