BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 31622843)

  • 1. Mean atomic number analysis by the coherent to backscattering intensity ratios at 59.54 and 661.62 photon energies.
    Akkuş T; Yılmaz D
    Appl Radiat Isot; 2020 Jan; 155():108926. PubMed ID: 31622843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependence of albedo factors on mean atomic number for 662 keV gamma photons.
    Akkuş T; Yılmaz D
    Appl Radiat Isot; 2019 Dec; 154():108870. PubMed ID: 31454726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental measurement of effective atomic numbers and albedo factors for some alloys using the backscattering technique.
    Kaur T; Sharma J; Singh T
    Appl Radiat Isot; 2020 Apr; 158():109065. PubMed ID: 32174379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variation of scattering intensity ratios with mean atomic number using a dilution technique in EDXRF.
    Akkuş T; Uzunoğlu Z; Yılmaz D
    Appl Radiat Isot; 2019 Mar; 145():7-11. PubMed ID: 30557772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mass attenuation coefficients, effective atomic numbers and effective electron densities for some polymers.
    Kucuk N; Cakir M; Isitman NA
    Radiat Prot Dosimetry; 2013 Jan; 153(1):127-34. PubMed ID: 22645382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective atomic numbers of boron compounds obtained using Rayleigh to compton scattering intensity ratio.
    Cinan E; Yılmaz D
    Appl Radiat Isot; 2021 Aug; 174():109753. PubMed ID: 33971550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Albedo factors of some elements in the atomic number range 26≤Z≤79 for 59.54keV.
    Yılmaz D; Uzunoğlu Z; Demir C
    Appl Radiat Isot; 2017 Apr; 122():68-71. PubMed ID: 28110024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Albedo factors of some boron compounds at 59.54 keV.
    Yılmaz D; Akkuş T
    Appl Radiat Isot; 2021 Aug; 174():109756. PubMed ID: 33940356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photon backscattering tissue characterization by energy dispersive spectroscopy evaluations.
    Tartari A; Casnati E; Fernandez JE; Felsteiner J; Baraldi C
    Phys Med Biol; 1994 Feb; 39(2):219-30. PubMed ID: 15552121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of the momentum transfer on the sensitivity of a photon scattering method for the characterization of tissues.
    Leichter I; Karellas A; Craven JD; Greenfield MA
    Med Phys; 1984; 11(1):31-6. PubMed ID: 6700551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental response function of a 3 in×3 in NaI(Tl) detector by inverse matrix method and effective atomic number of composite materials by gamma backscattering technique.
    Kiran KU; Ravindraswami K; Eshwarappa KM; Somashekarappa HM
    Appl Radiat Isot; 2016 May; 111():56-65. PubMed ID: 26926377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of external magnetic field on the Kβ/Kα X-ray intensity ratios of TixNi1-x alloys excited by 59.54 and 22.69keV photons.
    Perişanoğlu U; Alım B; Uğurlu M; Demir L
    Appl Radiat Isot; 2016 Sep; 115():183-189. PubMed ID: 27395003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of real and imaginary form factors of silver atom using a high resolution HPGe detector.
    Krishnananda ; Niranjana KM; Badiger NM
    J Xray Sci Technol; 2013; 21(4):557-65. PubMed ID: 24191992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of K X-ray fluorescence cross-sections, fluorescence yields and intensity ratios for some elements in the atomic range 22 Han I; Sahin M; Demir L; Sahin Y
    Appl Radiat Isot; 2007 Jun; 65(6):669-75. PubMed ID: 17353129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Possibility of single biomolecule imaging with coherent amplification of weak scattering x-ray photons.
    Shintake T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041906. PubMed ID: 18999454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Compton backscattering process and radiotherapy.
    Weeks KJ; Litvinenko VN; Madey JM
    Med Phys; 1997 Mar; 24(3):417-23. PubMed ID: 9089593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response function of NaI(Tl) detectors and multiple backscattering of gamma rays in aluminium.
    Sabharwal AD; Singh M; Singh B; Sandhu BS
    Appl Radiat Isot; 2008 Oct; 66(10):1467-73. PubMed ID: 18467113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on effective atomic numbers, electron densities and mass attenuation coefficients in Au alloys.
    Han I; Demir L
    J Xray Sci Technol; 2010; 18(1):39-46. PubMed ID: 20421703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photon beams for radiosurgery produced by laser Compton backscattering from relativistic electrons.
    Girolami B; Larsson B; Preger M; Schaerf C; Stepanek J
    Phys Med Biol; 1996 Sep; 41(9):1581-96. PubMed ID: 8884899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of radiation attenuation coefficients, effective atomic numbers and electron densities for some building materials.
    Damla N; Baltas H; Celik A; Kiris E; Cevik U
    Radiat Prot Dosimetry; 2012 Jul; 150(4):541-9. PubMed ID: 22128356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.