These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 31622863)

  • 1. Recycling experimental investigation on end of life photovoltaic panels by application of high voltage fragmentation.
    Song BP; Zhang MY; Fan Y; Jiang L; Kang J; Gou TT; Zhang CL; Yang N; Zhang GJ; Zhou X
    Waste Manag; 2020 Jan; 101():180-187. PubMed ID: 31622863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electro-hydraulic fragmentation vs conventional crushing of photovoltaic panels - Impact on recycling.
    Nevala SM; Hamuyuni J; Junnila T; Sirviö T; Eisert S; Wilson BP; Serna-Guerrero R; Lundström M
    Waste Manag; 2019 Mar; 87():43-50. PubMed ID: 31109544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global status of recycling waste solar panels: A review.
    Xu Y; Li J; Tan Q; Peters AL; Yang C
    Waste Manag; 2018 May; 75():450-458. PubMed ID: 29472153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photovoltaic panel waste assessment and embodied material flows in China, 2000-2050.
    Song G; Lu Y; Liu B; Duan H; Feng H; Liu G
    J Environ Manage; 2023 Jul; 338():117675. PubMed ID: 36989951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovering valuable metals from recycled photovoltaic modules.
    Yi YK; Kim HS; Tran T; Hong SK; Kim MJ
    J Air Waste Manag Assoc; 2014 Jul; 64(7):797-807. PubMed ID: 25122953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The stripping effect of using high voltage electrical pulses breakage for waste printed circuit boards.
    Duan C; Han J; Zhao S; Gao Z; Qiao J; Yan G
    Waste Manag; 2018 Jul; 77():603-610. PubMed ID: 29891416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive review of the global trends and future perspectives for recycling of decommissioned photovoltaic panels.
    Akram Cheema H; Ilyas S; Kang H; Kim H
    Waste Manag; 2024 Feb; 174():187-202. PubMed ID: 38056367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategic overview of management of future solar photovoltaic panel waste generation in the Indian context.
    Rathore N; Panwar NL
    Waste Manag Res; 2022 May; 40(5):504-518. PubMed ID: 33885343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient and comprehensive recycling of valuable components from scrapped Si-based photovoltaic panels.
    Ding Y; He J; Zhang S; Jian J; Shi Z; Cao A
    Waste Manag; 2024 Mar; 175():183-190. PubMed ID: 38211472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resource efficient recovery of critical and precious metals from waste silicon PV panel recycling.
    Ardente F; Latunussa CEL; Blengini GA
    Waste Manag; 2019 May; 91():156-167. PubMed ID: 31203937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic criteria of the end-of-life silicon wafers refining for closing the recycling loop of photovoltaic panels.
    Lu X; Miki T; Takeda O; Zhu H; Nagasaka T
    Sci Technol Adv Mater; 2019; 20(1):813-825. PubMed ID: 31489054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reverse logistics network design for waste solar photovoltaic panels: A case study of New South Wales councils in Australia.
    Islam MT; Nizami MSH; Mahmoudi S; Huda N
    Waste Manag Res; 2021 Feb; 39(2):386-395. PubMed ID: 33023422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Innovative device for mechanical treatment of End of Life photovoltaic panels: Technical and environmental analysis.
    Del Pero F; Delogu M; Berzi L; Escamilla M
    Waste Manag; 2019 Jul; 95():535-548. PubMed ID: 31351640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental impacts of recycling crystalline silicon (c-SI) and cadmium telluride (CDTE) solar panels.
    Maani T; Celik I; Heben MJ; Ellingson RJ; Apul D
    Sci Total Environ; 2020 Sep; 735():138827. PubMed ID: 32464407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental and economic evaluation of solar panel wastes recycling.
    Gönen Ç; Kaplanoğlu E
    Waste Manag Res; 2019 Apr; 37(4):412-418. PubMed ID: 30786832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical and chemical treatment of end of life panels: An integrated automatic approach viable for different photovoltaic technologies.
    Pagnanelli F; Moscardini E; Granata G; Abo Atia T; Altimari P; Havlik T; Toro L
    Waste Manag; 2017 Jan; 59():422-431. PubMed ID: 27843026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overview of global status and challenges for end-of-life crystalline silicon photovoltaic panels: A focus on environmental impacts.
    Seo B; Kim JY; Chung J
    Waste Manag; 2021 Jun; 128():45-54. PubMed ID: 33965672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity assessment and feasible recycling process for amorphous silicon and CIS waste photovoltaic panels.
    Savvilotidou V; Antoniou A; Gidarakos E
    Waste Manag; 2017 Jan; 59():394-402. PubMed ID: 27742228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High voltage fragmentation of composites from secondary raw materials - Potential and limitations.
    Leißner T; Hamann D; Wuschke L; Jäckel HG; Peuker UA
    Waste Manag; 2018 Apr; 74():123-134. PubMed ID: 29336954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Valorization of polymeric fractions and metals from end of life photovoltaic panels.
    Rubino A; Schiavi PG; Altimari P; Pagnanelli F
    Waste Manag; 2021 Mar; 122():89-99. PubMed ID: 33494003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.