These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 31622866)

  • 1. Towards a circular economy: A comprehensive study of higher heat values and emission potential of various municipal solid wastes.
    Bagheri M; Esfilar R; Sina Golchi M; Kennedy CA
    Waste Manag; 2020 Jan; 101():210-221. PubMed ID: 31622866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components.
    Ansah E; Wang L; Shahbazi A
    Waste Manag; 2016 Oct; 56():196-206. PubMed ID: 27324928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification and comparison of municipal solid waste based on thermochemical characteristics.
    Zhou H; Meng A; Long Y; Li Q; Zhang Y
    J Air Waste Manag Assoc; 2014 May; 64(5):597-616. PubMed ID: 24941708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic codigestion of municipal, farm, and industrial organic wastes: a survey of recent literature.
    Alatriste-Mondragón F; Samar P; Cox HH; Ahring BK; Iranpour R
    Water Environ Res; 2006 Jun; 78(6):607-36. PubMed ID: 16894987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics.
    Gug J; Cacciola D; Sobkowicz MJ
    Waste Manag; 2015 Jan; 35():283-92. PubMed ID: 25453320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Prediction of Calorific Value of Carbonized Solid Fuel Produced from Refuse-Derived Fuel in the Low-Temperature Pyrolysis in CO
    Syguła E; Świechowski K; Stępień P; Koziel JA; Białowiec A
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33374414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suitability of municipal solid waste in African cities for thermochemical waste-to-energy conversion: The case of Harare Metropolitan City, Zimbabwe.
    Makarichi L; Kan R; Jutidamrongphan W; Techato KA
    Waste Manag Res; 2019 Jan; 37(1):83-94. PubMed ID: 30355247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Higher heating value estimation of wastes and fuels from ultimate and proximate analysis by using artificial neural networks.
    Insel MA; Yucel O; Sadikoglu H
    Waste Manag; 2024 Jul; 185():33-42. PubMed ID: 38820782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy content of municipal solid waste bales.
    Ozbay I; Durmusoglu E
    Waste Manag Res; 2013 Jul; 31(7):674-83. PubMed ID: 23615510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of applicability index for better management of municipal solid waste: a case study of Dhanbad, India.
    Yadav P; Samadder SR
    Environ Technol; 2018 Jun; 39(12):1481-1496. PubMed ID: 28513337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of carbon footprint emissions and environmental concerns of solid waste treatment and disposal techniques; case study of Malaysia.
    Malakahmad A; Abualqumboz MS; Kutty SRM; Abunama TJ
    Waste Manag; 2017 Dec; 70():282-292. PubMed ID: 28935377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Waste heat generation: A comprehensive review.
    Yeşiller N; Hanson JL; Yee EH
    Waste Manag; 2015 Aug; 42():166-79. PubMed ID: 25962825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of post-consumer plastic film waste from mixed MSW in Spain: A key point for the successful implementation of sustainable plastic waste management strategies.
    Gala A; Guerrero M; Serra JM
    Waste Manag; 2020 Jun; 111():22-33. PubMed ID: 32470724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental tests of co-combustion of pelletized leather tannery wastes and hardwood pellets.
    Kluska J; Turzyński T; Kardaś D
    Waste Manag; 2018 Sep; 79():22-29. PubMed ID: 30343749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-composting as an oxygen stabilization of an organic fraction of municipal solid waste and industrial sewage sludge.
    Milczarek M; Neczaj E; Parkitna K
    Water Sci Technol; 2013; 68(8):1697-706. PubMed ID: 24185049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical model for heating value of municipal solid waste in Brazil based on gravimetric composition.
    Drudi KCR; Drudi R; Martins G; Antonio GC; Leite JTC
    Waste Manag; 2019 Mar; 87():782-790. PubMed ID: 31109582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization, thermochemical conversion studies, and heating value modeling of municipal solid waste.
    Shi H; Mahinpey N; Aqsha A; Silbermann R
    Waste Manag; 2016 Feb; 48():34-47. PubMed ID: 26445363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors.
    Alvarenga P; Mourinha C; Farto M; Santos T; Palma P; Sengo J; Morais MC; Cunha-Queda C
    Waste Manag; 2015 Jun; 40():44-52. PubMed ID: 25708406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emission from open burning of municipal solid waste in India.
    Kumari K; Kumar S; Rajagopal V; Khare A; Kumar R
    Environ Technol; 2019 Jul; 40(17):2201-2214. PubMed ID: 28678614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From agricultural use of sewage sludge to nutrient extraction: A soil science outlook.
    Kirchmann H; Börjesson G; Kätterer T; Cohen Y
    Ambio; 2017 Mar; 46(2):143-154. PubMed ID: 27651268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.