These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 316229)

  • 21. The nature of the primary photochemical events in rhodopsin and isorhodopsin.
    Birge RR; Einterz CM; Knapp HM; Murray LP
    Biophys J; 1988 Mar; 53(3):367-85. PubMed ID: 2964878
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FTIR spectroscopy reveals microscopic structural changes of the protein around the rhodopsin chromophore upon photoisomerization.
    Kandori H; Maeda A
    Biochemistry; 1995 Oct; 34(43):14220-9. PubMed ID: 7578021
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Relationship between dark adaptation in retinal rods and rhodopsin photolysis].
    Kosolapov SS; Kalamkarov GR; OstrovskiÄ­ MA
    Fiziol Zh SSSR Im I M Sechenova; 1978 Jul; 64(7):905-11. PubMed ID: 308011
    [No Abstract]   [Full Text] [Related]  

  • 24. Picosecond absorption studies on rhodopsin and isorhodopsin in detergent and native membrane.
    Rudzki JE; Peters KS
    Biochemistry; 1984 Aug; 23(17):3843-8. PubMed ID: 6487580
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure around C6-C7 bond of the chromophore in bathorhodopsin: low-temperature spectroscopy of 6s-cis-locked bicyclic rhodopsin analogs.
    Imamoto Y; Sakai M; Katsuta Y; Wada A; Ito M; Shichida Y
    Biochemistry; 1996 May; 35(20):6257-62. PubMed ID: 8639566
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Light-activated rhodopsin phosphorylation may control light sensitivity in isolated rod outer segments.
    Miller JA; Brodie AE; Bownds MD
    FEBS Lett; 1975 Nov; 59(1):20-3. PubMed ID: 1083813
    [No Abstract]   [Full Text] [Related]  

  • 27. Resonance Raman spectroscopy of squid and bovine visual pigments: the primary photochemistry in visual transduction.
    Sulkes M; Lewis A; Marcus MA
    Biochemistry; 1978 Oct; 17(22):4712-22. PubMed ID: 728380
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The structure of the retinylidene chromophore in bathorhodopsin.
    Lewis A
    Biophys J; 1978 Oct; 24(1):249-54. PubMed ID: 708828
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the light-stimulated coupling between rhodopsin and its disk membrane environment.
    Uhl R; Hofmann KP; Kreutz W
    Biochemistry; 1978 Dec; 17(25):5347-52. PubMed ID: 728404
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular dynamics of trans-cis isomerization in bathorhodopsin.
    Birge RR; Hubbard LM
    Biophys J; 1981 Jun; 34(3):517-34. PubMed ID: 7248472
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Resonance Raman studies of bathorhodopsin: evidence for a protonated Schiff base linkage.
    Eyring G; Mathies R
    Proc Natl Acad Sci U S A; 1979 Jan; 76(1):33-7. PubMed ID: 284349
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of pH on the MI-MII equilibrium of rhodopsin in recombinant membranes.
    Gibson NJ; Brown MF
    Biochem Biophys Res Commun; 1990 Jun; 169(3):1028-34. PubMed ID: 2363712
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The orientation of the chromophore of vertebrate rhodopsin in the "meta" intermediate states and the reversibility of the meta II-meta III transition.
    Chabre M; Breton J
    Vision Res; 1979; 19(9):1005-18. PubMed ID: 43624
    [No Abstract]   [Full Text] [Related]  

  • 34. Existence of hypsorhodopsin as the first intermediate in the primary photochemical process of cattle rhodopsin.
    Kobayashi T
    Photochem Photobiol; 1980 Aug; 32(2):207-15. PubMed ID: 7433531
    [No Abstract]   [Full Text] [Related]  

  • 35. The kinetics of intermediate processes in the photolysis of bovine rhodopsin--II. The intermediate decay sequence from lumirhodopsin497 to metarhodopsin380 II.
    Rapp J
    Vision Res; 1979; 19(2):137-41. PubMed ID: 425332
    [No Abstract]   [Full Text] [Related]  

  • 36. Rhodopsin of the blue crab Callinectes: evidence for absorption differences in vitro and in vivo.
    Bruno MS; Goldsmith TH
    Vision Res; 1974 Aug; 14(8):653-8. PubMed ID: 4423024
    [No Abstract]   [Full Text] [Related]  

  • 37. Resonance Raman spectroscopy of octopus rhodopsin and its photoproducts.
    Pande C; Pande A; Yue KT; Callender R; Ebrey TG; Tsuda M
    Biochemistry; 1987 Aug; 26(16):4941-7. PubMed ID: 3663635
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 13C magic-angle spinning NMR studies of bathorhodopsin, the primary photoproduct of rhodopsin.
    Smith SO; Courtin J; de Groot H; Gebhard R; Lugtenburg J
    Biochemistry; 1991 Jul; 30(30):7409-15. PubMed ID: 1649627
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photochemistry of rhodopsin and isorhodopsin investigated on a picosecond time scale.
    Monger TG; Alfano RR; Callender RH
    Biophys J; 1979 Jul; 27(1):105-15. PubMed ID: 262374
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activation of phosphodiesterase by chicken iodopsin.
    Fukada Y; Yoshizawa T
    FEBS Lett; 1982 Nov; 149(1):117-22. PubMed ID: 6295811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.