These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 31622964)

  • 1. Interrogation of tumor metabolism in tissue samples ex vivo using fluorescence lifetime imaging of NAD(P)H.
    Lukina MM; Shimolina LE; Kiselev NM; Zagainov VE; Komarov DV; Zagaynova EV; Shirmanova MV
    Methods Appl Fluoresc; 2019 Nov; 8(1):014002. PubMed ID: 31622964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating Cell Metabolism Through Autofluorescence Imaging of NAD(P)H and FAD.
    Kolenc OI; Quinn KP
    Antioxid Redox Signal; 2019 Feb; 30(6):875-889. PubMed ID: 29268621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NAD(P)H autofluorescence lifetime imaging enables single cell analyses of cellular metabolism of osteoblasts in vitro and in vivo via two-photon microscopy.
    Schilling K; Brown E; Zhang X
    Bone; 2022 Jan; 154():116257. PubMed ID: 34781049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-photon fluorescence lifetime imaging of intrinsic NADH in three-dimensional tumor models.
    Cong A; Pimenta RML; Lee HB; Mereddy V; Holy J; Heikal AA
    Cytometry A; 2019 Jan; 95(1):80-92. PubMed ID: 30343512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-photon fluorescence lifetime imaging monitors metabolic changes during wound healing of corneal epithelial cells in vitro.
    Gehlsen U; Oetke A; Szaszák M; Koop N; Paulsen F; Gebert A; Huettmann G; Steven P
    Graefes Arch Clin Exp Ophthalmol; 2012 Sep; 250(9):1293-302. PubMed ID: 22562480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic Enzyme Mapping of Cellular Metabolism by Phasor-Analyzed Label-Free NAD(P)H Fluorescence Lifetime Imaging.
    Leben R; Köhler M; Radbruch H; Hauser AE; Niesner RA
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31703416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous Probing of Metabolism and Oxygenation of Tumors In Vivo Using FLIM of NAD(P)H and PLIM of a New Polymeric Ir(III) Oxygen Sensor.
    Parshina YP; Komarova AD; Bochkarev LN; Kovylina TA; Plekhanov AA; Klapshina LG; Konev AN; Mozherov AM; Shchechkin ID; Sirotkina MA; Shcheslavskiy VI; Shirmanova MV
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-photon FLIM of NAD(P)H and FAD in mesenchymal stem cells undergoing either osteogenic or chondrogenic differentiation.
    Meleshina AV; Dudenkova VV; Bystrova AS; Kuznetsova DS; Shirmanova MV; Zagaynova EV
    Stem Cell Res Ther; 2017 Jan; 8(1):15. PubMed ID: 28129796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noniterative biexponential fluorescence lifetime imaging in the investigation of cellular metabolism by means of NAD(P)H autofluorescence.
    Niesner R; Peker B; Schlüsche P; Gericke KH
    Chemphyschem; 2004 Aug; 5(8):1141-9. PubMed ID: 15446736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping metabolism of liver tissue using two-photon FLIM.
    Rodimova S; Kuznetsova D; Bobrov N; Elagin V; Shcheslavskiy V; Zagainov V; Zagaynova E
    Biomed Opt Express; 2020 Aug; 11(8):4458-4470. PubMed ID: 32923056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-photon fluorescence lifetime imaging microscopy of NADH metabolism in HIV-1 infected cells and tissues.
    Snyder GA; Kumar S; Lewis GK; Ray K
    Front Immunol; 2023; 14():1213180. PubMed ID: 37662898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free characterization of single extracellular vesicles using two-photon fluorescence lifetime imaging microscopy of NAD(P)H.
    Sorrells JE; Martin EM; Aksamitiene E; Mukherjee P; Alex A; Chaney EJ; Marjanovic M; Boppart SA
    Sci Rep; 2021 Feb; 11(1):3308. PubMed ID: 33558561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and characterization of phasor-based analysis for FLIM to evaluate the metabolic and epigenetic impact of HER2 inhibition on squamous cell carcinoma cultures.
    Pham DL; Miller CR; Myers MS; Myers DM; Hansen LA; Nichols MG
    J Biomed Opt; 2021 Oct; 26(10):. PubMed ID: 34628733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vivo Autofluorescence Imaging of Tumor Heterogeneity in Response to Treatment.
    Shah AT; Diggins KE; Walsh AJ; Irish JM; Skala MC
    Neoplasia; 2015 Dec; 17(12):862-870. PubMed ID: 26696368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-cell redox states analyzed by fluorescence lifetime metrics and tryptophan FRET interaction with NAD(P)H.
    Cao R; Wallrabe H; Siller K; Rehman Alam S; Periasamy A
    Cytometry A; 2019 Jan; 95(1):110-121. PubMed ID: 30604477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autofluorescence Imaging to Evaluate Cellular Metabolism.
    Theodossiou A; Hu L; Wang N; Nguyen U; Walsh AJ
    J Vis Exp; 2021 Nov; (177):. PubMed ID: 34842243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Associated anisotropy of intrinsic NAD(P)H for monitoring changes in the metabolic activities of breast cancer cells (4T1) in three-dimensional collagen matrix.
    Cong ATQ; Pimenta RML; Holy J; Heikal AA
    Phys Chem Chem Phys; 2021 Jun; 23(22):12692-12705. PubMed ID: 34036961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence Lifetime Imaging of NAD(P)H T Cells Autofluorescence in the Lymphatic Nodes to Assess the Effectiveness of Anti-CTLA-4 Immunotherapy.
    Izosimova AV; Mozherov AM; Shirmanova MV; Shcheslavskiy VI; Sachkova DA; Zagaynova EV; Sharonov GV; Yuzhakova DV
    Sovrem Tekhnologii Med; 2023; 15(3):5-15. PubMed ID: 38435479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separating NADH and NADPH fluorescence in live cells and tissues using FLIM.
    Blacker TS; Mann ZF; Gale JE; Ziegler M; Bain AJ; Szabadkai G; Duchen MR
    Nat Commun; 2014 May; 5():3936. PubMed ID: 24874098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-sheet autofluorescence lifetime imaging with a single-photon avalanche diode array.
    Samimi K; Desa DE; Lin W; Weiss K; Li J; Huisken J; Miskolci V; Huttenlocher A; Chacko JV; Velten A; Rogers JD; Eliceiri KW; Skala MC
    J Biomed Opt; 2023 Jun; 28(6):066502. PubMed ID: 37351197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.