These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 31623248)

  • 1. Robust Stride Detector from Ankle-Mounted Inertial Sensors for Pedestrian Navigation and Activity Recognition with Machine Learning Approaches.
    Beaufils B; Chazal F; Grelet M; Michel B
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31623248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A non-ZUPT gait reconstruction method for ankle sensors.
    Xiaoxu Wu ; Yan Wang ; Pottie G
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5884-7. PubMed ID: 25571335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Pedestrian Navigation Algorithm for a Foot-Mounted Inertial-Sensor-Based System.
    Ren M; Pan K; Liu Y; Guo H; Zhang X; Wang P
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26805848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pedestrian Navigation Method Based on Machine Learning and Gait Feature Assistance.
    Zhou Z; Yang S; Ni Z; Qian W; Gu C; Cao Z
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indoor Trajectory Reconstruction of Walking, Jogging, and Running Activities Based on a Foot-Mounted Inertial Pedestrian Dead-Reckoning System.
    Ceron JD; Martindale CF; López DM; Kluge F; Eskofier BM
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31991597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pedestrian Stride-Length Estimation Based on LSTM and Denoising Autoencoders.
    Wang Q; Ye L; Luo H; Men A; Zhao F; Huang Y
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Diverse Gait Dataset: Gait Segmentation Using Inertial Sensors for Pedestrian Localization with Different Genders, Heights and Walking Speeds.
    Huang C; Zhang F; Xu Z; Wei J
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stride length determination during overground running using a single foot-mounted inertial measurement unit.
    Brahms CM; Zhao Y; Gerhard D; Barden JM
    J Biomech; 2018 Apr; 71():302-305. PubMed ID: 29459072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pedestrian Navigation Using Foot-Mounted Inertial Sensor and LIDAR.
    Pham DD; Suh YS
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26797619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research on an Improved Method for Foot-Mounted Inertial/Magnetometer Pedestrian-Positioning Based on the Adaptive Gradient Descent Algorithm.
    Wang Q; Yin J; Noureldin A; Iqbal U
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30477156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Zero-Velocity Interval Detection Algorithm for a Pedestrian Navigation System with Foot-Mounted Inertial Sensors.
    Wang X; Li J; Xu G; Wang X
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reliability and concurrent validity of spatiotemporal stride characteristics measured with an ankle-worn sensor among older individuals.
    Rantalainen T; Pirkola H; Karavirta L; Rantanen T; Linnamo V
    Gait Posture; 2019 Oct; 74():33-39. PubMed ID: 31442820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinematic Model-Based Pedestrian Dead Reckoning for Heading Correction and Lower Body Motion Tracking.
    Lee MS; Ju H; Song JW; Park CG
    Sensors (Basel); 2015 Nov; 15(11):28129-53. PubMed ID: 26561814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of Ankle Joint Power during Walking Using Two Inertial Sensors.
    Jiang X; Gholami M; Khoshnam M; Eng JJ; Menon C
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31234451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on the Forward and Reverse Calculation Based on the Adaptive Zero-Velocity Interval Adjustment for the Foot-Mounted Inertial Pedestrian-Positioning System.
    Wang Q; Guo Z; Sun Z; Cui X; Liu K
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29883399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Heuristic Drift Elimination with Adaptive Zero-Velocity Detection and Heading Correction Algorithms for Pedestrian Navigation.
    Zhu R; Wang Y; Yu B; Gan X; Jia H; Wang B
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32053884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Foot-Mounted Pedestrian Navigation Method by Comparing ADR and Modified ZUPT Based on MEMS IMU Array.
    Xing L; Tu X; Chen Z
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32640628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate Ambulatory Gait Analysis in Walking and Running Using Machine Learning Models.
    Zhang H; Guo Y; Zanotto D
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):191-202. PubMed ID: 31831428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Adaptive Zero Velocity Detection Algorithm Based on Multi-Sensor Fusion for a Pedestrian Navigation System.
    Ma M; Song Q; Gu Y; Li Y; Zhou Z
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30274161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-contained pedestrian tracking during normal walking using an inertial/magnetic sensor module.
    Meng X; Zhang ZQ; Wu JK; Wong WC; Yu H
    IEEE Trans Biomed Eng; 2014 Mar; 61(3):892-9. PubMed ID: 24557690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.