These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 31623401)

  • 1. Immobilization of Polyiodide Redox Species in Porous Carbon for Battery-Like Electrodes in Eco-Friendly Hybrid Electrochemical Capacitors.
    Abbas Q; Fitzek H; Schröttner H; Dsoke S; Gollas B
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31623401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iodine Adsorption in Nanoporous Carbon to Fabricate Assimilated Battery Electrodes for Durable Hybrid Supercapacitors.
    Larasati LD; Supiyeva Z; Islam MT; Abbas Q
    Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elaborating the Iodine/Polyiodide Equilibrium Effects in Nanoporous Carbon-based Battery Electrode via Extreme Mass Asymmetry in Hybrid Cells.
    Schranger H; Khosravi S; Fitzek H; Abbas Q
    ChemElectroChem; 2021 Aug; 8(16):3155-3160. PubMed ID: 34595089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-discharge of electrochemical capacitors based on soluble or grafted quinone.
    Shul G; Bélanger D
    Phys Chem Chem Phys; 2016 Jul; 18(28):19137-45. PubMed ID: 27356866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of an Iodine Film on Charge-Transfer Resistance during the Electro-Oxidation of Iodide in Redox Flow Batteries.
    Jang WJ; Cha JS; Kim H; Yang JH
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6385-6393. PubMed ID: 33502159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New generation "nanohybrid supercapacitor".
    Naoi K; Naoi W; Aoyagi S; Miyamoto J; Kamino T
    Acc Chem Res; 2013 May; 46(5):1075-83. PubMed ID: 22433167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Energy Density Aqueous Electrochemical Capacitors with a KI-KOH Electrolyte.
    Wang X; Chandrabose RS; Chun SE; Zhang T; Evanko B; Jian Z; Boettcher SW; Stucky GD; Ji X
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):19978-85. PubMed ID: 26310453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the Capacitance of Battery-Type Hybrid Capacitors by Encapsulating MgO Nanoparticles in Porous Carbon as Reservoirs for OH
    Wang J; Wang C; Gong S; Chen Q
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21567-21577. PubMed ID: 31140273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical Double-Layer Capacitor Energized by Adding an Ambipolar Organic Redox Radical into the Electrolyte.
    Hu L; Shi C; Guo K; Zhai T; Li H; Wang Y
    Angew Chem Int Ed Engl; 2018 Jul; 57(27):8214-8218. PubMed ID: 29797542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fundamentally Addressing Bromine Storage through Reversible Solid-State Confinement in Porous Carbon Electrodes: Design of a High-Performance Dual-Redox Electrochemical Capacitor.
    Yoo SJ; Evanko B; Wang X; Romelczyk M; Taylor A; Ji X; Boettcher SW; Stucky GD
    J Am Chem Soc; 2017 Jul; 139(29):9985-9993. PubMed ID: 28696675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triiodide-in-Iodine Networks Stabilized by Quaternary Ammonium Cations as Accelerants for Electrode Kinetics of Iodide Oxidation in Aqueous Media.
    Kim H; Kim KM; Ryu J; Ki S; Sohn D; Chae J; Chang J
    ACS Appl Mater Interfaces; 2022 Mar; 14(10):12168-12179. PubMed ID: 35254047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge.
    Chun SE; Evanko B; Wang X; Vonlanthen D; Ji X; Stucky GD; Boettcher SW
    Nat Commun; 2015 Aug; 6():7818. PubMed ID: 26239891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review of Hybrid Ion Capacitors: From Aqueous to Lithium to Sodium.
    Ding J; Hu W; Paek E; Mitlin D
    Chem Rev; 2018 Jul; 118(14):6457-6498. PubMed ID: 29953230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding performance limitation and suppression of leakage current or self-discharge in electrochemical capacitors: a review.
    Ike IS; Sigalas I; Iyuke S
    Phys Chem Chem Phys; 2016 Jan; 18(2):661-80. PubMed ID: 26659405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High energy supercapattery with an ionic liquid solution of LiClO4.
    Yu L; Chen GZ
    Faraday Discuss; 2016 Aug; 190():231-40. PubMed ID: 27228429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of a hybrid capacitive storage device via hydrogen gas and carbon electrodes coupling.
    Zhu Z; Liu Z; Yin Y; Yuan Y; Meng Y; Jiang T; Peng Q; Wang W; Chen W
    Nat Commun; 2022 May; 13(1):2805. PubMed ID: 35589703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective Enhancement of Energy Density of Zinc-Polyiodide Flow Batteries by Organic/Penta-iodide Complexation.
    Lee JI; Faheem AB; Jang WJ; Kim KM; Cha JS; Seo NU; Kim H; Lee KK; Yang JH
    ACS Appl Mater Interfaces; 2023 Oct; 15(41):48122-48134. PubMed ID: 37791814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ni(OH)₂ and NiO Based Composites: Battery Type Electrode Materials for Hybrid Supercapacitor Devices.
    Brisse AL; Stevens P; Toussaint G; Crosnier O; Brousse T
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 29996510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.