These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 31623546)
1. Are Wearable Robots Effective for Gait Recovery After Stroke? Cirstea CM Stroke; 2019 Dec; 50(12):3337-3338. PubMed ID: 31623546 [No Abstract] [Full Text] [Related]
2. Stroke: Wearable robot aids walking after stroke. Ridler C Nat Rev Neurol; 2017 Oct; 13(10):576-577. PubMed ID: 28799550 [No Abstract] [Full Text] [Related]
3. A wearable resistive robot facilitates locomotor adaptations during gait. Washabaugh EP; Krishnan C Restor Neurol Neurosci; 2018; 36(2):215-223. PubMed ID: 29526856 [TBL] [Abstract][Full Text] [Related]
4. Assessing Effectiveness and Costs in Robot-Mediated Lower Limbs Rehabilitation: A Meta-Analysis and State of the Art. Carpino G; Pezzola A; Urbano M; Guglielmelli E J Healthc Eng; 2018; 2018():7492024. PubMed ID: 29973978 [TBL] [Abstract][Full Text] [Related]
5. A wearable hip-assist robot reduces the cardiopulmonary metabolic energy expenditure during stair ascent in elderly adults: a pilot cross-sectional study. Kim DS; Lee HJ; Lee SH; Chang WH; Jang J; Choi BO; Ryu GH; Kim YH BMC Geriatr; 2018 Sep; 18(1):230. PubMed ID: 30268096 [TBL] [Abstract][Full Text] [Related]
6. Evaluating wearable multimodal sensor insoles for motion-pattern measurements in stroke rehabilitation - A pilot study. David V; Forjan M; Martinek J; Kotzian S; Jagos H; Rafolt D IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1543-1548. PubMed ID: 28814039 [TBL] [Abstract][Full Text] [Related]
7. Wearable robotic exoskeleton for overground gait training in sub-acute and chronic hemiparetic stroke patients: preliminary results. Molteni F; Gasperini G; Gaffuri M; Colombo M; Giovanzana C; Lorenzon C; Farina N; Cannaviello G; Scarano S; Proserpio D; Liberali D; Guanziroli E Eur J Phys Rehabil Med; 2017 Oct; 53(5):676-684. PubMed ID: 28118698 [TBL] [Abstract][Full Text] [Related]
8. Effect of the Synchronization-Based Control of a Wearable Robot Having a Non-Exoskeletal Structure on the Hemiplegic Gait of Stroke Patients. Mizukami N; Takeuchi S; Tetsuya M; Tsukahara A; Yoshida K; Matsushima A; Maruyama Y; Tako K; Hashimoto M IEEE Trans Neural Syst Rehabil Eng; 2018 May; 26(5):1011-1016. PubMed ID: 29752236 [TBL] [Abstract][Full Text] [Related]
9. A Poincare map based analysis of stroke patients' walking after a rehabilitation by a robot. Abedi M; Moghaddam MM; Fallah D Math Biosci; 2018 May; 299():73-84. PubMed ID: 29518402 [TBL] [Abstract][Full Text] [Related]
10. Effects of a wearable exoskeleton stride management assist system (SMA®) on spatiotemporal gait characteristics in individuals after stroke: a randomized controlled trial. Buesing C; Fisch G; O'Donnell M; Shahidi I; Thomas L; Mummidisetty CK; Williams KJ; Takahashi H; Rymer WZ; Jayaraman A J Neuroeng Rehabil; 2015 Aug; 12():69. PubMed ID: 26289955 [TBL] [Abstract][Full Text] [Related]
11. Improved walking ability with wearable robot-assisted training in patients suffering chronic stroke. Li L; Ding L; Chen N; Mao Y; Huang D; Li L Biomed Mater Eng; 2015; 26 Suppl 1():S329-40. PubMed ID: 26406020 [TBL] [Abstract][Full Text] [Related]
12. Feasibility and efficacy of wearable devices for upper limb rehabilitation in patients with chronic stroke: a randomized controlled pilot study. Lin LF; Lin YJ; Lin ZH; Chuang LY; Hsu WC; Lin YH Eur J Phys Rehabil Med; 2018 Jun; 54(3):388-396. PubMed ID: 28627862 [TBL] [Abstract][Full Text] [Related]
13. The use of wearable devices for walking and running gait analysis outside of the lab: A systematic review. Benson LC; Clermont CA; Bošnjak E; Ferber R Gait Posture; 2018 Jun; 63():124-138. PubMed ID: 29730488 [TBL] [Abstract][Full Text] [Related]
14. Locomotion improvement using a hybrid assistive limb in recovery phase stroke patients: a randomized controlled pilot study. Watanabe H; Tanaka N; Inuta T; Saitou H; Yanagi H Arch Phys Med Rehabil; 2014 Nov; 95(11):2006-12. PubMed ID: 25010538 [TBL] [Abstract][Full Text] [Related]
15. Combined transcranial direct current stimulation and robot-assisted gait training in patients with chronic stroke: a preliminary comparison. Geroin C; Picelli A; Munari D; Waldner A; Tomelleri C; Smania N Clin Rehabil; 2011 Jun; 25(6):537-48. PubMed ID: 21402651 [TBL] [Abstract][Full Text] [Related]
16. Agreement between Opal and G-Walk Wearable Inertial Systems in Gait Analysis on Normal and Pathological Subjects. D'Addio G; Donisi L; Pagano G; Improta G; Biancardi A; Cesarelli M Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3286-3289. PubMed ID: 31946585 [TBL] [Abstract][Full Text] [Related]
17. Changes in gait and plantar foot loading upon using vibrotactile wearable biofeedback system in patients with stroke. Ma CZ; Zheng YP; Lee WC Top Stroke Rehabil; 2018 Jan; 25(1):20-27. PubMed ID: 28950803 [TBL] [Abstract][Full Text] [Related]
18. Training for mobility with exoskeleton robot in spinal cord injury patients: a pilot study. Sale P; Russo EF; Scarton A; Calabrò RS; Masiero S; Filoni S Eur J Phys Rehabil Med; 2018 Oct; 54(5):745-751. PubMed ID: 29517187 [TBL] [Abstract][Full Text] [Related]
19. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. Bortole M; Venkatakrishnan A; Zhu F; Moreno JC; Francisco GE; Pons JL; Contreras-Vidal JL J Neuroeng Rehabil; 2015 Jun; 12():54. PubMed ID: 26076696 [TBL] [Abstract][Full Text] [Related]
20. Robot-assisted training using Hybrid Assistive Limb® for cerebral palsy. Matsuda M; Iwasaki N; Mataki Y; Mutsuzaki H; Yoshikawa K; Takahashi K; Enomoto K; Sano K; Kubota A; Nakayama T; Nakayama J; Ohguro H; Mizukami M; Tomita K Brain Dev; 2018 Sep; 40(8):642-648. PubMed ID: 29773349 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]