These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 31623672)
1. Osteogenic potential of induced pluripotent stem cells from human adipose-derived stem cells. Mao SH; Chen CH; Chen CT Stem Cell Res Ther; 2019 Oct; 10(1):303. PubMed ID: 31623672 [TBL] [Abstract][Full Text] [Related]
2. Comparing the Osteogenic Potential and Bone Regeneration Capacities of Dedifferentiated Fat Cells and Adipose-Derived Stem Cells In Vitro and In Vivo: Application of DFAT Cells Isolated by a Mesh Method. Takabatake K; Matsubara M; Yamachika E; Fujita Y; Arimura Y; Nakatsuji K; Nakano K; Nagatsuka H; Iida S Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830277 [TBL] [Abstract][Full Text] [Related]
3. In vitro osteogenic differentiation of adipose stem cells after lentiviral transduction with green fluorescent protein. Wang Q; Steigelman MB; Walker JA; Chen S; Hornsby PJ; Bohnenblust ME; Wang HT J Craniofac Surg; 2009 Nov; 20(6):2193-9. PubMed ID: 19934675 [TBL] [Abstract][Full Text] [Related]
5. Conditioned Medium Enhances Osteogenic Differentiation of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells. Zhong S; He X; Li Y; Lou X Tissue Eng Regen Med; 2019 Apr; 16(2):141-150. PubMed ID: 30989041 [TBL] [Abstract][Full Text] [Related]
6. Osteogenic differentiation of human adipose-derived stem cells in 3D conditions - comparison of spheroids and polystyrene scaffolds. Rumiński S; Kalaszczyńska I; Długosz A; Lewandowska-Szumieł M Eur Cell Mater; 2019 May; 37():382-401. PubMed ID: 31099888 [TBL] [Abstract][Full Text] [Related]
7. In vivo differentiation of undifferentiated human adipose tissue-derived mesenchymal stem cells in critical-sized calvarial bone defects. Choi JW; Park EJ; Shin HS; Shin IS; Ra JC; Koh KS Ann Plast Surg; 2014 Feb; 72(2):225-33. PubMed ID: 23221992 [TBL] [Abstract][Full Text] [Related]
8. Human induced pluripotent stem cell-derived mesenchymal stem cell seeding on calcium phosphate scaffold for bone regeneration. Tang M; Chen W; Liu J; Weir MD; Cheng L; Xu HH Tissue Eng Part A; 2014 Apr; 20(7-8):1295-305. PubMed ID: 24279868 [TBL] [Abstract][Full Text] [Related]
9. Effect of endothelial differentiated adipose-derived stem cells on vascularity and osteogenesis in poly(D,L-lactide) scaffolds in vivo. Sahar DE; Walker JA; Wang HT; Stephenson SM; Shah AR; Krishnegowda NK; Wenke JC J Craniofac Surg; 2012 May; 23(3):913-8. PubMed ID: 22627404 [TBL] [Abstract][Full Text] [Related]
10. Critical-size calvarial bone defects healing in a mouse model with silk scaffolds and SATB2-modified iPSCs. Ye JH; Xu YJ; Gao J; Yan SG; Zhao J; Tu Q; Zhang J; Duan XJ; Sommer CA; Mostoslavsky G; Kaplan DL; Wu YN; Zhang CP; Wang L; Chen J Biomaterials; 2011 Aug; 32(22):5065-76. PubMed ID: 21492931 [TBL] [Abstract][Full Text] [Related]
11. Electroporation-mediated transfer of Runx2 and Osterix genes to enhance osteogenesis of adipose stem cells. Lee JS; Lee JM; Im GI Biomaterials; 2011 Jan; 32(3):760-8. PubMed ID: 20947160 [TBL] [Abstract][Full Text] [Related]
12. Osteogenic differentiation and bone regeneration of iPSC-MSCs supported by a biomimetic nanofibrous scaffold. Xie J; Peng C; Zhao Q; Wang X; Yuan H; Yang L; Li K; Lou X; Zhang Y Acta Biomater; 2016 Jan; 29():365-379. PubMed ID: 26441129 [TBL] [Abstract][Full Text] [Related]
13. Low-level laser therapy promotes the osteogenic potential of adipose-derived mesenchymal stem cells seeded on an acellular dermal matrix. Choi K; Kang BJ; Kim H; Lee S; Bae S; Kweon OK; Kim WH J Biomed Mater Res B Appl Biomater; 2013 Aug; 101(6):919-28. PubMed ID: 23529895 [TBL] [Abstract][Full Text] [Related]
14. Baghdadite ceramics modulate the cross talk between human adipose stem cells and osteoblasts for bone regeneration. Lu Z; Wang G; Roohani-Esfahani I; Dunstan CR; Zreiqat H Tissue Eng Part A; 2014 Mar; 20(5-6):992-1002. PubMed ID: 24195838 [TBL] [Abstract][Full Text] [Related]
15. Enhanced reconstruction of rat calvarial defects achieved by plasma-treated electrospun scaffolds and induced pluripotent stem cells. Ardeshirylajimi A; Dinarvand P; Seyedjafari E; Langroudi L; Adegani FJ; Soleimani M Cell Tissue Res; 2013 Dec; 354(3):849-60. PubMed ID: 23955642 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of tibial regeneration in a rat model by adipose-derived stromal cells in a PLGA scaffold. Park BH; Zhou L; Jang KY; Park HS; Lim JM; Yoon SJ; Lee SY; Kim JR Bone; 2012 Sep; 51(3):313-23. PubMed ID: 22684001 [TBL] [Abstract][Full Text] [Related]
17. Ectopic bone formation by aggregated mesenchymal stem cells from bone marrow and adipose tissue: A comparative study. Fennema EM; Tchang LAH; Yuan H; van Blitterswijk CA; Martin I; Scherberich A; de Boer J J Tissue Eng Regen Med; 2018 Jan; 12(1):e150-e158. PubMed ID: 28485099 [TBL] [Abstract][Full Text] [Related]
18. Patient-Derived Human Induced Pluripotent Stem Cells From Gingival Fibroblasts Composited With Defined Nanohydroxyapatite/Chitosan/Gelatin Porous Scaffolds as Potential Bone Graft Substitutes. Ji J; Tong X; Huang X; Zhang J; Qin H; Hu Q Stem Cells Transl Med; 2016 Jan; 5(1):95-105. PubMed ID: 26586776 [TBL] [Abstract][Full Text] [Related]
19. Targeted reversion of induced pluripotent stem cells from patients with human cleidocranial dysplasia improves bone regeneration in a rat calvarial bone defect model. Saito A; Ooki A; Nakamura T; Onodera S; Hayashi K; Hasegawa D; Okudaira T; Watanabe K; Kato H; Onda T; Watanabe A; Kosaki K; Nishimura K; Ohtaka M; Nakanishi M; Sakamoto T; Yamaguchi A; Sueishi K; Azuma T Stem Cell Res Ther; 2018 Jan; 9(1):12. PubMed ID: 29357927 [TBL] [Abstract][Full Text] [Related]
20. Comparison of bone regenerative capacity of donor-matched human adipose-derived and bone marrow mesenchymal stem cells. Mohamed-Ahmed S; Yassin MA; Rashad A; Espedal H; Idris SB; Finne-Wistrand A; Mustafa K; Vindenes H; Fristad I Cell Tissue Res; 2021 Mar; 383(3):1061-1075. PubMed ID: 33242173 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]