These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31623777)

  • 1. Photorespiration is the major alternative electron sink under high light in alpine evergreen sclerophyllous Rhododendron species.
    Huang W; Yang YJ; Wang JH; Hu H
    Plant Sci; 2019 Dec; 289():110275. PubMed ID: 31623777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Light Dependence of Mesophyll Conductance and Relative Limitations on Photosynthesis in Evergreen Sclerophyllous
    Yang YJ; Hu H; Huang W
    Plants (Basel); 2020 Nov; 9(11):. PubMed ID: 33182785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The water-water cycle is a major electron sink in Camellia species when CO
    Cai YF; Yang QY; Li SF; Wang JH; Huang W
    J Photochem Photobiol B; 2017 Mar; 168():59-66. PubMed ID: 28171808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal variations in photosystem I compared with photosystem II of three alpine evergreen broad-leaf tree species.
    Huang W; Yang YJ; Hu H; Zhang SB
    J Photochem Photobiol B; 2016 Dec; 165():71-79. PubMed ID: 27768955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photosynthesis and Photosynthetic Electron Flow in the Alpine Evergreen Species
    Huang W; Hu H; Zhang SB
    Front Plant Sci; 2016; 7():1511. PubMed ID: 27812359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Sclerophyllous
    Huang W; Tong YG; Yu GY; Yang WX
    Front Plant Sci; 2016; 7():1769. PubMed ID: 27933083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Land plants drive photorespiration as higher electron-sink: comparative study of post-illumination transient O
    Hanawa H; Ishizaki K; Nohira K; Takagi D; Shimakawa G; Sejima T; Shaku K; Makino A; Miyake C
    Physiol Plant; 2017 Sep; 161(1):138-149. PubMed ID: 28419460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. III: fitting of experimental data by a simple model.
    André MJ
    Biosystems; 2013 Aug; 113(2):104-14. PubMed ID: 23153764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The response of cyclic electron flow around photosystem I to changes in photorespiration and nitrate assimilation.
    Walker BJ; Strand DD; Kramer DM; Cousins AB
    Plant Physiol; 2014 May; 165(1):453-62. PubMed ID: 24664207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photosynthetic limitation of several representative subalpine species in the Catalan Pyrenees in summer.
    Fernàndez-Martínez J; Fleck I
    Plant Biol (Stuttg); 2016 Jul; 18(4):638-48. PubMed ID: 26833754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosynthetic regulation under fluctuating light at chilling temperature in evergreen and deciduous tree species.
    Huang W; Hu H; Zhang SB
    J Photochem Photobiol B; 2021 Jun; 219():112203. PubMed ID: 33957467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of growth temperature on the electron flow for photorespiration in leaves of tobacco grown in the field.
    Zhang W; Huang W; Yang QY; Zhang SB; Hu H
    Physiol Plant; 2013 Sep; 149(1):141-50. PubMed ID: 23480306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altitudinal changes in leaf hydraulic conductance across five Rhododendron species in eastern Nepal.
    Taneda H; Kandel DR; Ishida A; Ikeda H
    Tree Physiol; 2016 Oct; 36(10):1272-1282. PubMed ID: 27417514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photorespiration provides the chance of cyclic electron flow to operate for the redox-regulation of P700 in photosynthetic electron transport system of sunflower leaves.
    Takagi D; Hashiguchi M; Sejima T; Makino A; Miyake C
    Photosynth Res; 2016 Sep; 129(3):279-90. PubMed ID: 27116126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-level anatomical characteristics explain high mesophyll conductance and photosynthetic capacity in sclerophyllous Mediterranean oaks.
    Peguero-Pina JJ; Sisó S; Flexas J; Galmés J; García-Nogales A; Niinemets Ü; Sancho-Knapik D; Saz MÁ; Gil-Pelegrín E
    New Phytol; 2017 Apr; 214(2):585-596. PubMed ID: 28058722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific roles of cyclic electron flow around photosystem I in photosynthetic regulation in immature and mature leaves.
    Huang W; Yang YJ; Zhang SB
    J Plant Physiol; 2017 Feb; 209():76-83. PubMed ID: 28013173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response of the water-water cycle to the change in photorespiration in tobacco.
    Huang W; Yang YJ; Hu H; Zhang SB
    J Photochem Photobiol B; 2016 Apr; 157():97-104. PubMed ID: 26896885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of heat stress in situ demonstrates a protective role of irradiation on photosynthetic performance in alpine plants.
    Buchner O; Stoll M; Karadar M; Kranner I; Neuner G
    Plant Cell Environ; 2015 Apr; 38(4):812-26. PubMed ID: 25256247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulatory network of proton motive force: contribution of cyclic electron transport around photosystem I.
    Shikanai T
    Photosynth Res; 2016 Sep; 129(3):253-60. PubMed ID: 26858094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. IV: role of conductance and laws of its regulation in C3 plants.
    André MJ
    Biosystems; 2013 Aug; 113(2):115-26. PubMed ID: 23318161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.