These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 31623790)
1. Impact of high or low levels of phosphorus and high sodium in soils on productivity and stress tolerance of Arundo donax plants. Cocozza C; Brilli F; Miozzi L; Pignattelli S; Rotunno S; Brunetti C; Giordano C; Pollastri S; Centritto M; Accotto GP; Tognetti R; Loreto F Plant Sci; 2019 Dec; 289():110260. PubMed ID: 31623790 [TBL] [Abstract][Full Text] [Related]
2. The excess of phosphorus in soil reduces physiological performances over time but enhances prompt recovery of salt-stressed Arundo donax plants. Cocozza C; Brilli F; Pignattelli S; Pollastri S; Brunetti C; Gonnelli C; Tognetti R; Centritto M; Loreto F Plant Physiol Biochem; 2020 Jun; 151():556-565. PubMed ID: 32315911 [TBL] [Abstract][Full Text] [Related]
3. Root Exposure to 5-Aminolevulinic Acid (ALA) Affects Leaf Element Accumulation, Isoprene Emission, Phytohormonal Balance, and Photosynthesis of Salt-Stressed Brilli F; Pignattelli S; Baraldi R; Neri L; Pollastri S; Gonnelli C; Giovannelli A; Loreto F; Cocozza C Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457125 [No Abstract] [Full Text] [Related]
4. Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress. Pollastri S; Savvides A; Pesando M; Lumini E; Volpe MG; Ozudogru EA; Faccio A; De Cunzo F; Michelozzi M; Lambardi M; Fotopoulos V; Loreto F; Centritto M; Balestrini R Planta; 2018 Mar; 247(3):573-585. PubMed ID: 29124326 [TBL] [Abstract][Full Text] [Related]
5. Transcriptional response of giant reed (Arundo donax L.) low ecotype to long-term salt stress by unigene-based RNAseq. Sicilia A; Santoro DF; Testa G; Cosentino SL; Lo Piero AR Phytochemistry; 2020 Sep; 177():112436. PubMed ID: 32563719 [TBL] [Abstract][Full Text] [Related]
6. RNASeq analysis of giant cane reveals the leaf transcriptome dynamics under long-term salt stress. Sicilia A; Testa G; Santoro DF; Cosentino SL; Lo Piero AR BMC Plant Biol; 2019 Aug; 19(1):355. PubMed ID: 31416418 [TBL] [Abstract][Full Text] [Related]
7. Arbuscular Mycorrhizal Fungi Confer Salt Tolerance in Giant Reed ( Romero-Munar A; Baraza E; Gulías J; Cabot C Front Plant Sci; 2019; 10():843. PubMed ID: 31396243 [TBL] [Abstract][Full Text] [Related]
8. Transcriptional, metabolic and DNA methylation changes underpinning the response of Arundo donax ecotypes to NaCl excess. Docimo T; De Stefano R; De Palma M; Cappetta E; Villano C; Aversano R; Tucci M Planta; 2019 Dec; 251(1):34. PubMed ID: 31848729 [TBL] [Abstract][Full Text] [Related]
9. Modulation of class III peroxidase pathways and phenylpropanoids in Arundo donax under salt and phosphorus stress. Cocozza C; Bartolini P; Brunetti C; Miozzi L; Pignattelli S; Podda A; Scippa GS; Trupiano D; Rotunno S; Brilli F; Maserti BE Plant Physiol Biochem; 2022 Jul; 183():151-159. PubMed ID: 35598532 [TBL] [Abstract][Full Text] [Related]
10. Phenotypic differences determine drought stress responses in ecotypes of Arundo donax adapted to different environments. Ahrar M; Doneva D; Tattini M; Brunetti C; Gori A; Rodeghiero M; Wohlfahrt G; Biasioli F; Varotto C; Loreto F; Velikova V J Exp Bot; 2017 Apr; 68(9):2439-2451. PubMed ID: 28449129 [TBL] [Abstract][Full Text] [Related]
11. Evaluating the potential use of Cu-contaminated soils for giant reed (Arundo donax, L.) cultivation as a biomass crop. Coppa E; Astolfi S; Beni C; Carnevale M; Colarossi D; Gallucci F; Santangelo E Environ Sci Pollut Res Int; 2020 Mar; 27(8):8662-8672. PubMed ID: 31907812 [TBL] [Abstract][Full Text] [Related]
12. Assessing Arundo donax L. in vitro-tolerance for phytoremediation purposes. Cano-Ruiz J; Ruiz Galea M; Amorós MC; Alonso J; Mauri PV; Lobo MC Chemosphere; 2020 Aug; 252():126576. PubMed ID: 32443267 [TBL] [Abstract][Full Text] [Related]
13. Insights into the physiological responses of the facultative halophyte Aeluropus littoralis to the combined effects of salinity and phosphorus availability. Talbi Zribi O; Barhoumi Z; Kouas S; Ghandour M; Slama I; Abdelly C J Plant Physiol; 2015 Sep; 189():1-10. PubMed ID: 26476701 [TBL] [Abstract][Full Text] [Related]
14. Effect of Increasing Salinity on Development of Giant Reed (Arundo donax) from Rhizome and Culms. Allinson G Bull Environ Contam Toxicol; 2017 Dec; 99(6):743-747. PubMed ID: 29080112 [TBL] [Abstract][Full Text] [Related]
15. [Effect of iron plaque on root surfaces on phosphorus uptake of two wetland plants]. Wang ZY; Liu LH; Wen SF; Peng CS; Xing BS; Li FM Huan Jing Ke Xue; 2010 Mar; 31(3):781-6. PubMed ID: 20358843 [TBL] [Abstract][Full Text] [Related]
16. [Tolerance of Arundo donax to heavy metals]. Han Z; Hu Z Ying Yong Sheng Tai Xue Bao; 2005 Jan; 16(1):161-5. PubMed ID: 15852979 [TBL] [Abstract][Full Text] [Related]
17. Selenate tolerance and selenium hyperaccumulation in the monocot giant reed (Arundo donax), a biomass crop plant with phytoremediation potential. Domokos-Szabolcsy É; Fári M; Márton L; Czakó M; Veres S; Elhawat N; Antal G; El-Ramady H; Zsíros O; Garab G; Alshaal T Environ Sci Pollut Res Int; 2018 Nov; 25(31):31368-31380. PubMed ID: 30196460 [TBL] [Abstract][Full Text] [Related]
18. Moderate Drought Stress Induces Increased Foliar Dimethylsulphoniopropionate (DMSP) Concentration and Isoprene Emission in Two Contrasting Ecotypes of Haworth M; Catola S; Marino G; Brunetti C; Michelozzi M; Riggi E; Avola G; Cosentino SL; Loreto F; Centritto M Front Plant Sci; 2017; 8():1016. PubMed ID: 28659959 [TBL] [Abstract][Full Text] [Related]
20. Comparison of the single and combined effects of arsenic and antimony on growth and physiology of giant reed (Arundo donax L.). Shetty R; Vidya CS; Vaculík M Environ Sci Pollut Res Int; 2021 Oct; 28(39):55476-55485. PubMed ID: 34138437 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]