These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 31623870)
1. Gene Regulation Knows Its Boundaries. de Wit E Trends Genet; 2019 Dec; 35(12):883-885. PubMed ID: 31623870 [TBL] [Abstract][Full Text] [Related]
2. The spatial organization of the human genome. Bickmore WA Annu Rev Genomics Hum Genet; 2013; 14():67-84. PubMed ID: 23875797 [TBL] [Abstract][Full Text] [Related]
3. Gene functioning and storage within a folded genome. Razin SV; Ulianov SV Cell Mol Biol Lett; 2017; 22():18. PubMed ID: 28861108 [TBL] [Abstract][Full Text] [Related]
4. Tae Hoon Kim: knows his boundaries. Interview by Ruth Williams. Kim TH J Cell Biol; 2008 Oct; 183(1):4-5. PubMed ID: 18838549 [No Abstract] [Full Text] [Related]
6. Genetic and epigenetic control of the spatial organization of the genome. Brickner J Mol Biol Cell; 2017 Feb; 28(3):364-369. PubMed ID: 28137949 [TBL] [Abstract][Full Text] [Related]
7. FISH-eyed and genome-wide views on the spatial organisation of gene expression. Simonis M; de Laat W Biochim Biophys Acta; 2008 Nov; 1783(11):2052-60. PubMed ID: 18721832 [TBL] [Abstract][Full Text] [Related]
8. Perspectives: using polymer modeling to understand the formation and function of nuclear compartments. Haddad N; Jost D; Vaillant C Chromosome Res; 2017 Mar; 25(1):35-50. PubMed ID: 28091870 [TBL] [Abstract][Full Text] [Related]
9. [Regulatory systems of genome domains with vague boundaries]. Iudinkova ES; Razin SV Genetika; 2003 Feb; 39(2):182-6. PubMed ID: 12669413 [TBL] [Abstract][Full Text] [Related]
10. Subnuclear organization and trafficking of regulatory proteins: implications for biological control and cancer. Stein GS; van Wijnen AJ; Stein JL; Lian JB; Montecino M; Zaidi K; Javed A J Cell Biochem Suppl; 2000; Suppl 35():84-92. PubMed ID: 11389536 [TBL] [Abstract][Full Text] [Related]
11. Implications of CpG islands on chromosomal architectures and modes of global gene regulation. Beck S; Rhee C; Song J; Lee BK; LeBlanc L; Cannon L; Kim J Nucleic Acids Res; 2018 May; 46(9):4382-4391. PubMed ID: 29529258 [TBL] [Abstract][Full Text] [Related]
12. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Lanctôt C; Cheutin T; Cremer M; Cavalli G; Cremer T Nat Rev Genet; 2007 Feb; 8(2):104-15. PubMed ID: 17230197 [TBL] [Abstract][Full Text] [Related]
13. Chromatin remodeling as a guide to transcriptional regulatory networks in mammals. Urnov FD J Cell Biochem; 2003 Mar; 88(4):684-94. PubMed ID: 12577302 [TBL] [Abstract][Full Text] [Related]
15. Structural variations, the regulatory landscape of the genome and their alteration in human disease. Spielmann M; Mundlos S Bioessays; 2013 Jun; 35(6):533-43. PubMed ID: 23625790 [TBL] [Abstract][Full Text] [Related]
18. Primary transcripts: From the discovery of RNA processing to current concepts of gene expression - Review. Scherrer K Exp Cell Res; 2018 Dec; 373(1-2):1-33. PubMed ID: 30266658 [TBL] [Abstract][Full Text] [Related]
19. Nuclear genome organization: common themes and individual patterns. Fedorova E; Zink D Curr Opin Genet Dev; 2009 Apr; 19(2):166-71. PubMed ID: 19321336 [TBL] [Abstract][Full Text] [Related]
20. The eukaryotic genome: a system regulated at different hierarchical levels. van Driel R; Fransz PF; Verschure PJ J Cell Sci; 2003 Oct; 116(Pt 20):4067-75. PubMed ID: 12972500 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]