These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31624148)

  • 1. Two uptake hydrogenases differentially interact with the aerobic respiratory chain during mycobacterial growth and persistence.
    Cordero PRF; Grinter R; Hards K; Cryle MJ; Warr CG; Cook GM; Greening C
    J Biol Chem; 2019 Dec; 294(50):18980-18991. PubMed ID: 31624148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Putative Iron-Sulfur Proteins Are Required for Hydrogen Consumption and Enhance Survival of Mycobacteria.
    Islam ZF; Cordero PRF; Greening C
    Front Microbiol; 2019; 10():2749. PubMed ID: 31824474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three different [NiFe] hydrogenases confer metabolic flexibility in the obligate aerobe Mycobacterium smegmatis.
    Berney M; Greening C; Hards K; Collins D; Cook GM
    Environ Microbiol; 2014 Jan; 16(1):318-30. PubMed ID: 24536093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for bacterial energy extraction from atmospheric hydrogen.
    Grinter R; Kropp A; Venugopal H; Senger M; Badley J; Cabotaje PR; Jia R; Duan Z; Huang P; Stripp ST; Barlow CK; Belousoff M; Shafaat HS; Cook GM; Schittenhelm RB; Vincent KA; Khalid S; Berggren G; Greening C
    Nature; 2023 Mar; 615(7952):541-547. PubMed ID: 36890228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases.
    Greening C; Berney M; Hards K; Cook GM; Conrad R
    Proc Natl Acad Sci U S A; 2014 Mar; 111(11):4257-61. PubMed ID: 24591586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Terminal Respiratory Oxidases: A Targetables Vulnerability of Mycobacterial Bioenergetics?
    Bajeli S; Baid N; Kaur M; Pawar GP; Chaudhari VD; Kumar A
    Front Cell Infect Microbiol; 2020; 10():589318. PubMed ID: 33330134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The growth and survival of Mycobacterium smegmatis is enhanced by co-metabolism of atmospheric H2.
    Greening C; Villas-Bôas SG; Robson JR; Berney M; Cook GM
    PLoS One; 2014; 9(7):e103034. PubMed ID: 25058581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unique flexibility in energy metabolism allows mycobacteria to combat starvation and hypoxia.
    Berney M; Cook GM
    PLoS One; 2010 Jan; 5(1):e8614. PubMed ID: 20062806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developing high-affinity, oxygen-insensitive [NiFe]-hydrogenases as biocatalysts for energy conversion.
    Greening C; Kropp A; Vincent K; Grinter R
    Biochem Soc Trans; 2023 Oct; 51(5):1921-1933. PubMed ID: 37743798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal expression of Mycobacterium smegmatis respiratory terminal oxidases.
    Megehee JA; Lundrigan MD
    Can J Microbiol; 2007 Mar; 53(3):459-63. PubMed ID: 17538658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia.
    Berney M; Greening C; Conrad R; Jacobs WR; Cook GM
    Proc Natl Acad Sci U S A; 2014 Aug; 111(31):11479-84. PubMed ID: 25049411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the cydAB-encoded cytochrome bd oxidase from Mycobacterium smegmatis.
    Kana BD; Weinstein EA; Avarbock D; Dawes SS; Rubin H; Mizrahi V
    J Bacteriol; 2001 Dec; 183(24):7076-86. PubMed ID: 11717265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy-converting [NiFe] hydrogenases: more than just H2 activation.
    Hedderich R; Forzi L
    J Mol Microbiol Biotechnol; 2005; 10(2-4):92-104. PubMed ID: 16645307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytochrome
    Fischer M; Falke D; Naujoks C; Sawers RG
    J Bacteriol; 2018 Aug; 200(16):. PubMed ID: 29784883
    [No Abstract]   [Full Text] [Related]  

  • 15. A widely distributed hydrogenase oxidises atmospheric H
    Islam ZF; Welsh C; Bayly K; Grinter R; Southam G; Gagen EJ; Greening C
    ISME J; 2020 Nov; 14(11):2649-2658. PubMed ID: 32647310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response of
    Chauhan P; van der Meulen SA; Simões Caetano JM; Goojani HG; Botman D; van Spanning R; Lill H; Bald D
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased alanine dehydrogenase activity during dormancy in Mycobacterium smegmatis.
    Hutter B; Dick T
    FEMS Microbiol Lett; 1998 Oct; 167(1):7-11. PubMed ID: 9785446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity of Spore-Specific Respiratory Nitrate Reductase 1 of
    Falke D; Biefel B; Haase A; Franke S; Fischer M; Sawers RG
    J Bacteriol; 2019 Jun; 201(11):. PubMed ID: 30858301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric Oxide Does Not Inhibit but Is Metabolized by the Cytochrome
    Forte E; Giuffrè A; Huang LS; Berry EA; Borisov VB
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33198276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Persistence of the dominant soil phylum Acidobacteria by trace gas scavenging.
    Greening C; Carere CR; Rushton-Green R; Harold LK; Hards K; Taylor MC; Morales SE; Stott MB; Cook GM
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10497-502. PubMed ID: 26240343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.