BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 31624277)

  • 1. Enhanced Figure of Merit in Bismuth-Antimony Fine-Grained Alloys at Cryogenic Temperatures.
    Gao S; Gaskins J; Hu X; Tomko K; Hopkins P; Poon SJ
    Sci Rep; 2019 Oct; 9(1):14892. PubMed ID: 31624277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys.
    Poudel B; Hao Q; Ma Y; Lan Y; Minnich A; Yu B; Yan X; Wang D; Muto A; Vashaee D; Chen X; Liu J; Dresselhaus MS; Chen G; Ren Z
    Science; 2008 May; 320(5876):634-8. PubMed ID: 18356488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fine-Tuning Bi
    Li L; Jia J; Shi C; Zeng W
    Molecules; 2022 Nov; 27(23):. PubMed ID: 36500276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CsBi(4)Te(6): A high-performance thermoelectric material for low-temperature applications.
    Chung DY; Hogan T; Brazis P; Rocci-Lane M; Kannewurf C; Bastea M; Uher C; Kanatzidis MG
    Science; 2000 Feb; 287(5455):1024-7. PubMed ID: 10669411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic Effect of Bismuth and Indium Codoping for High Thermoelectric Performance of Melt Spinning SnTe Alloys.
    Tan H; Guo L; Wang G; Wu H; Shen X; Zhang B; Lu X; Wang G; Zhang X; Zhou X
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23337-23345. PubMed ID: 31252466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanostructures versus solid solutions: low lattice thermal conductivity and enhanced thermoelectric figure of merit in Pb9.6Sb0.2Te10-xSex bulk materials.
    Poudeu PF; D'Angelo J; Kong H; Downey A; Short JL; Pcionek R; Hogan TP; Uher C; Kanatzidis MG
    J Am Chem Soc; 2006 Nov; 128(44):14347-55. PubMed ID: 17076508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene).
    Bubnova O; Khan ZU; Malti A; Braun S; Fahlman M; Berggren M; Crispin X
    Nat Mater; 2011 Jun; 10(6):429-33. PubMed ID: 21532583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 nanocomposites.
    Xie W; He J; Kang HJ; Tang X; Zhu S; Laver M; Wang S; Copley JR; Brown CM; Zhang Q; Tritt TM
    Nano Lett; 2010 Sep; 10(9):3283-9. PubMed ID: 20687520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Weighted Mobility Ratio Engineering for High-Performance Bi-Te-Based Thermoelectric Materials via Suppression of Minority Carrier Transport.
    Kim M; Kim SI; Kim SW; Kim HS; Lee KH
    Adv Mater; 2021 Nov; 33(47):e2005931. PubMed ID: 33759235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melt-Centrifuged (Bi,Sb)
    Pan Y; Aydemir U; Grovogui JA; Witting IT; Hanus R; Xu Y; Wu J; Wu CF; Sun FH; Zhuang HL; Dong JF; Li JF; Dravid VP; Snyder GJ
    Adv Mater; 2018 Jul; ():e1802016. PubMed ID: 29984538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical Transport and Thermoelectric Properties of SnSe-SnTe Solid Solution.
    Cho JY; Siyar M; Jin WC; Hwang E; Bae SH; Hong SH; Kim M; Park C
    Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31766632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing Thermoelectric Performance of n-Type Hot Deformed Bismuth-Telluride-Based Solid Solutions by Nonstoichiometry-Mediated Intrinsic Point Defects.
    Zhai R; Hu L; Wu H; Xu Z; Zhu TJ; Zhao XB
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28577-28585. PubMed ID: 28776374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement in the thermoelectric performance of highly reproducible n-type (Bi,Sb)
    Nasir N; Lee KH; Kim SI; Kim HS; Lim JH; Fu L; Kim SW
    RSC Adv; 2020 Jun; 10(41):24663-24668. PubMed ID: 35516194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Te substitution on crystal structure and transport properties of AgBiSe
    Goto Y; Nishida A; Nishiate H; Murata M; Lee CH; Miura A; Moriyoshi C; Kuroiwa Y; Mizuguchi Y
    Dalton Trans; 2018 Feb; 47(8):2575-2580. PubMed ID: 29384546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Enhanced Thermoelectric and Mechanical Properties of Bi-Sb-Te Compounds by Carrier Modulation and Microstructure Adjustment.
    Liang H; Lou Q; Zhu YK; Guo J; Wang ZY; Gu SW; Yu W; Feng J; He J; Ge ZH
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45589-45599. PubMed ID: 34542277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoelectrics. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics.
    Kim SI; Lee KH; Mun HA; Kim HS; Hwang SW; Roh JW; Yang DJ; Shin WH; Li XS; Lee YH; Snyder GJ; Kim SW
    Science; 2015 Apr; 348(6230):109-14. PubMed ID: 25838382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultralow Lattice Thermal Conductivity and Superhigh Thermoelectric Figure-of-Merit in (Mg, Bi) Co-Doped GeTe.
    Xing T; Zhu C; Song Q; Huang H; Xiao J; Ren D; Shi M; Qiu P; Shi X; Xu F; Chen L
    Adv Mater; 2021 Apr; 33(17):e2008773. PubMed ID: 33760288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved Thermoelectric Performance of Tellurium by Alloying with a Small Concentration of Selenium to Decrease Lattice Thermal Conductivity.
    Saparamadu U; Li C; He R; Zhu H; Ren Z; Mao J; Song S; Sun J; Chen S; Zhang Q; Nielsch K; Broido D; Ren Z
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):511-516. PubMed ID: 30525424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured YbAgCu4 for potentially cryogenic thermoelectric cooling.
    Koirala M; Wang H; Pokharel M; Lan Y; Guo C; Opeil C; Ren Z
    Nano Lett; 2014 Sep; 14(9):5016-20. PubMed ID: 25079115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical Synthesis of Iron Antimonide (FeSb2) and Its Thermoelectric Properties.
    Saleemi M; Tafti MY; Jacquot A; Jägle M; Johnsson M; Toprak MS
    Inorg Chem; 2016 Feb; 55(4):1831-6. PubMed ID: 26836130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.