These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
554 related articles for article (PubMed ID: 31624503)
1. Engineering the oleaginous yeast Pang Y; Zhao Y; Li S; Zhao Y; Li J; Hu Z; Zhang C; Xiao D; Yu A Biotechnol Biofuels; 2019; 12():241. PubMed ID: 31624503 [TBL] [Abstract][Full Text] [Related]
2. High-efficiency production of bisabolene from waste cooking oil by metabolically engineered Yarrowia lipolytica. Zhao Y; Zhu K; Li J; Zhao Y; Li S; Zhang C; Xiao D; Yu A Microb Biotechnol; 2021 Nov; 14(6):2497-2513. PubMed ID: 33605546 [TBL] [Abstract][Full Text] [Related]
3. Efficient synthesis of limonene production in Yarrowia lipolytica by combinatorial engineering strategies. Park YK; Sellés Vidal L; Bell D; Zabret J; Soldat M; Kavšček M; Ledesma-Amaro R Biotechnol Biofuels Bioprod; 2024 Jul; 17(1):94. PubMed ID: 38961416 [TBL] [Abstract][Full Text] [Related]
4. Engineering Yarrowia lipolytica towards food waste bioremediation: Production of fatty acid ethyl esters from vegetable cooking oil. Ng TK; Yu AQ; Ling H; Pratomo Juwono NK; Choi WJ; Leong SSJ; Chang MW J Biosci Bioeng; 2020 Jan; 129(1):31-40. PubMed ID: 31320262 [TBL] [Abstract][Full Text] [Related]
6. Metabolic engineering Yarrowia lipolytica for a dual biocatalytic system to produce fatty acid ethyl esters from renewable feedstock in situ and in one pot. Wei LJ; Ma YY; Cheng BQ; Gao Q; Hua Q Appl Microbiol Biotechnol; 2021 Nov; 105(21-22):8561-8573. PubMed ID: 34661706 [TBL] [Abstract][Full Text] [Related]
7. Engineering oleaginous yeast Yarrowia lipolytica for enhanced limonene production from xylose and lignocellulosic hydrolysate. Yao F; Liu SC; Wang DN; Liu ZJ; Hua Q; Wei LJ FEMS Yeast Res; 2020 Sep; 20(6):. PubMed ID: 32840573 [TBL] [Abstract][Full Text] [Related]
8. Biosynthesis of α-Pinene by Genetically Engineered Wei LJ; Zhong YT; Nie MY; Liu SC; Hua Q J Agric Food Chem; 2021 Jan; 69(1):275-285. PubMed ID: 33356235 [TBL] [Abstract][Full Text] [Related]
9. A modular pathway engineering strategy for the high-level production of β-ionone in Yarrowia lipolytica. Lu Y; Yang Q; Lin Z; Yang X Microb Cell Fact; 2020 Feb; 19(1):49. PubMed ID: 32103761 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous Improvement of Limonene Production and Tolerance in Li J; Zhu K; Miao L; Rong L; Zhao Y; Li S; Ma L; Li J; Zhang C; Xiao D; Foo JL; Yu A ACS Synth Biol; 2021 Apr; 10(4):884-896. PubMed ID: 33715363 [TBL] [Abstract][Full Text] [Related]
11. Engineering the oleaginous yeast Yarrowia lipolytica to produce the aroma compound β-ionone. Czajka JJ; Nathenson JA; Benites VT; Baidoo EEK; Cheng Q; Wang Y; Tang YJ Microb Cell Fact; 2018 Sep; 17(1):136. PubMed ID: 30172260 [TBL] [Abstract][Full Text] [Related]
12. Engineering Yarrowia lipolytica for the sustainable production of β-farnesene from waste oil feedstock. Liu Y; Zhang J; Li Q; Wang Z; Cui Z; Su T; Lu X; Qi Q; Hou J Biotechnol Biofuels Bioprod; 2022 Oct; 15(1):101. PubMed ID: 36192797 [TBL] [Abstract][Full Text] [Related]
13. Enhanced production of amyrin in Yarrowia lipolytica using a combinatorial protein and metabolic engineering approach. Kong J; Miao L; Lu Z; Wang S; Zhao B; Zhang C; Xiao D; Teo D; Leong SSJ; Wong A; Yu A Microb Cell Fact; 2022 Sep; 21(1):186. PubMed ID: 36085205 [TBL] [Abstract][Full Text] [Related]
14. Sustainable biosynthesis of squalene from waste cooking oil by the yeast Wang S; Sun X; Han Y; Li Z; Lu X; Shi H; Zhang CY; Wong A; Yu A Metab Eng Commun; 2024 Jun; 18():e00240. PubMed ID: 38948667 [TBL] [Abstract][Full Text] [Related]
15. Yarrowia lipolytica construction for heterologous synthesis of α-santalene and fermentation optimization. Jia D; Xu S; Sun J; Zhang C; Li D; Lu W Appl Microbiol Biotechnol; 2019 Apr; 103(8):3511-3520. PubMed ID: 30863877 [TBL] [Abstract][Full Text] [Related]
16. α-Farnesene production from lipid by engineered Yarrowia lipolytica. Liu Y; Wang Z; Cui Z; Qi Q; Hou J Bioresour Bioprocess; 2021 Aug; 8(1):78. PubMed ID: 38650210 [TBL] [Abstract][Full Text] [Related]
17. Microbial synthesis of wax esters. Soong YV; Zhao L; Liu N; Yu P; Lopez C; Olson A; Wong HW; Shao Z; Xie D Metab Eng; 2021 Sep; 67():428-442. PubMed ID: 34391890 [TBL] [Abstract][Full Text] [Related]
18. Increased Accumulation of Squalene in Engineered Yarrowia lipolytica through Deletion of Wei LJ; Cao X; Liu JJ; Kwak S; Jin YS; Wang W; Hua Q Appl Environ Microbiol; 2021 Aug; 87(17):e0048121. PubMed ID: 34132586 [TBL] [Abstract][Full Text] [Related]
19. Combining Metabolic Engineering and Lipid Droplet Storage Engineering for Improved α-Bisabolene Production in Lu Z; Wang Y; Li Z; Zhang Y; He S; Zhang Z; Leong S; Wong A; Zhang CY; Yu A J Agric Food Chem; 2023 Aug; 71(30):11534-11543. PubMed ID: 37463315 [TBL] [Abstract][Full Text] [Related]
20. Promoting the Synthesis of Precursor Substances by Overexpressing Hexokinase (Hxk) and Hydroxymethylglutaryl-CoA Synthase (Erg13) to Elevate β-Carotene Production in Engineered Qiang S; Wang J; Xiong XC; Qu YL; Liu L; Hu CY; Meng YH Front Microbiol; 2020; 11():1346. PubMed ID: 32636824 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]