BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 31624532)

  • 1. Suppressing immunotherapy by organ-specific tumor microenvironments: what is in the brain?
    Zhang C; Yu D
    Cell Biosci; 2019; 9():82. PubMed ID: 31624532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue-Dependent Tumor Microenvironments and Their Impact on Immunotherapy Responses.
    Oliver AJ; Lau PKH; Unsworth AS; Loi S; Darcy PK; Kershaw MH; Slaney CY
    Front Immunol; 2018; 9():70. PubMed ID: 29445373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microenvironmental Regulation of Tumor Progression and Therapeutic Response in Brain Metastasis.
    Schulz M; Salamero-Boix A; Niesel K; Alekseeva T; Sevenich L
    Front Immunol; 2019; 10():1713. PubMed ID: 31396225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of organ-specific tumor microenvironments on response patterns to immunotherapy.
    Conway JW; Braden J; Wilmott JS; Scolyer RA; Long GV; Pires da Silva I
    Front Immunol; 2022; 13():1030147. PubMed ID: 36466910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breast Tumor Metastasis and Its Microenvironment: It Takes Both Seed and Soil to Grow a Tumor and Target It for Treatment.
    Bonni S; Brindley DN; Chamberlain MD; Daneshvar-Baghbadorani N; Freywald A; Hemmings DG; Hombach-Klonisch S; Klonisch T; Raouf A; Shemanko CS; Topolnitska D; Visser K; Vizeacoumar FJ; Wang E; Gibson SB
    Cancers (Basel); 2024 Feb; 16(5):. PubMed ID: 38473273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood-Brain Barrier, Cell Junctions, and Tumor Microenvironment in Brain Metastases, the Biological Prospects and Dilemma in Therapies.
    Guan Z; Lan H; Cai X; Zhang Y; Liang A; Li J
    Front Cell Dev Biol; 2021; 9():722917. PubMed ID: 34504845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunotherapy in NSCLC patients with brain metastases. Understanding brain tumor microenvironment and dissecting outcomes from immune checkpoint blockade in the clinic.
    VilariƱo N; Bruna J; Bosch-Barrera J; Valiente M; Nadal E
    Cancer Treat Rev; 2020 Sep; 89():102067. PubMed ID: 32682248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The CNS and the Brain Tumor Microenvironment: Implications for Glioblastoma Immunotherapy.
    Desland FA; Hormigo A
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33027976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prospects for personalized combination immunotherapy for solid tumors based on adoptive cell therapies and immune checkpoint blockade therapies.
    Kato D; Yaguchi T; Iwata T; Morii K; Nakagawa T; Nishimura R; Kawakami Y
    Nihon Rinsho Meneki Gakkai Kaishi; 2017; 40(1):68-77. PubMed ID: 28539557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Nanoparticles for Targeted Remodeling of the Tumor Microenvironment to Improve Cancer Immunotherapy.
    Gao S; Yang D; Fang Y; Lin X; Jin X; Wang Q; Wang X; Ke L; Shi K
    Theranostics; 2019; 9(1):126-151. PubMed ID: 30662558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lyophilizable and Multifaceted Toll-like Receptor 7/8 Agonist-Loaded Nanoemulsion for the Reprogramming of Tumor Microenvironments and Enhanced Cancer Immunotherapy.
    Kim SY; Kim S; Kim JE; Lee SN; Shin IW; Shin HS; Jin SM; Noh YW; Kang YJ; Kim YS; Kang TH; Park YM; Lim YT
    ACS Nano; 2019 Nov; 13(11):12671-12686. PubMed ID: 31589013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TME-targeted approaches of brain metastases and its clinical therapeutic evidence.
    Khan IM; Khan SU; Sala HSS; Khan MU; Ud Din MA; Khan S; Hassan SSU; Khan NM; Liu Y
    Front Immunol; 2023; 14():1131874. PubMed ID: 37228619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining Radiation Therapy with Immune Checkpoint Blockade for Central Nervous System Malignancies.
    D'Souza NM; Fang P; Logan J; Yang J; Jiang W; Li J
    Front Oncol; 2016; 6():212. PubMed ID: 27774435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cancer Immunotherapy Getting Brainy: Visualizing the Distinctive CNS Metastatic Niche to Illuminate Therapeutic Resistance.
    Owyong M; Hosseini-Nassab N; Efe G; Honkala A; van den Bijgaart RJE; Plaks V; Smith BR
    Drug Resist Updat; 2017 Nov; 33-35():23-35. PubMed ID: 29145972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Roles of CD38 and CD157 in the Solid Tumor Microenvironment and Cancer Immunotherapy.
    Wo YJ; Gan ASP; Lim X; Tay ISY; Lim S; Lim JCT; Yeong JPS
    Cells; 2019 Dec; 9(1):. PubMed ID: 31861847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of costimulatory and inhibitory receptors in FoxP3
    Toker A; Ohashi PS
    Adv Cancer Res; 2019; 144():193-261. PubMed ID: 31349899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunotherapy and tumor microenvironment.
    Tang H; Qiao J; Fu YX
    Cancer Lett; 2016 Jan; 370(1):85-90. PubMed ID: 26477683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Turning "Cold" Into "Hot" Tumors-Opportunities and Challenges for Radio-Immunotherapy Against Primary and Metastatic Brain Cancers.
    Sevenich L
    Front Oncol; 2019; 9():163. PubMed ID: 30941312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Janus Face of Tumor Microenvironment Targeted by Immunotherapy.
    Buoncervello M; Gabriele L; Toschi E
    Int J Mol Sci; 2019 Sep; 20(17):. PubMed ID: 31484464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multimodal predictors for precision immunotherapy.
    Roelofsen LM; Kaptein P; Thommen DS
    Immunooncol Technol; 2022 Jun; 14():100071. PubMed ID: 35755892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.