These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31624829)

  • 1. Emerging concepts of potassium homeostasis in plants.
    Srivastava AK; Shankar A; Nalini Chandran AK; Sharma M; Jung KH; Suprasanna P; Pandey GK
    J Exp Bot; 2020 Jan; 71(2):608-619. PubMed ID: 31624829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca
    Verma P; Sanyal SK; Pandey GK
    Plant Cell Rep; 2021 Nov; 40(11):2111-2122. PubMed ID: 34415375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging roles of the CBL-CIPK calcium signaling network as key regulatory hub in plant nutrition.
    Dong Q; Bai B; Almutairi BO; Kudla J
    J Plant Physiol; 2021 Feb; 257():153335. PubMed ID: 33388664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic approaches for improvement of the crop potassium acquisition and utilization efficiency.
    Wang Y; Wu WH
    Curr Opin Plant Biol; 2015 Jun; 25():46-52. PubMed ID: 25941764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges.
    Chen G; Hu Q; Luo L; Yang T; Zhang S; Hu Y; Yu L; Xu G
    Plant Cell Environ; 2015 Dec; 38(12):2747-65. PubMed ID: 26046301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport and homeostasis of potassium and phosphate: limiting factors for sustainable crop production.
    Luan M; Tang RJ; Tang Y; Tian W; Hou C; Zhao F; Lan W; Luan S
    J Exp Bot; 2017 Jun; 68(12):3091-3105. PubMed ID: 27965362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice.
    Shen Y; Shen L; Shen Z; Jing W; Ge H; Zhao J; Zhang W
    Plant Cell Environ; 2015 Dec; 38(12):2766-79. PubMed ID: 26046379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potassium in plant physiological adaptation to abiotic stresses.
    Mostofa MG; Rahman MM; Ghosh TK; Kabir AH; Abdelrahman M; Rahman Khan MA; Mochida K; Tran LP
    Plant Physiol Biochem; 2022 Sep; 186():279-289. PubMed ID: 35932652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving rice tolerance to potassium deficiency by enhancing OsHAK16p:WOX11-controlled root development.
    Chen G; Feng H; Hu Q; Qu H; Chen A; Yu L; Xu G
    Plant Biotechnol J; 2015 Aug; 13(6):833-48. PubMed ID: 25599895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of calcium nutrition in plant Physiology: Advances in research and insights into acidic soil conditions - A comprehensive review.
    Jing T; Li J; He Y; Shankar A; Saxena A; Tiwari A; Maturi KC; Solanki MK; Singh V; Eissa MA; Ding Z; Xie J; Awasthi MK
    Plant Physiol Biochem; 2024 May; 210():108602. PubMed ID: 38608506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PDH45 transgenic rice maintain cell viability through lower accumulation of Na(+), ROS and calcium homeostasis in roots under salinity stress.
    Nath M; Yadav S; Kumar Sahoo R; Passricha N; Tuteja R; Tuteja N
    J Plant Physiol; 2016 Feb; 191():1-11. PubMed ID: 26687010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NPKS uptake, sensing, and signaling and miRNAs in plant nutrient stress.
    Nath M; Tuteja N
    Protoplasma; 2016 May; 253(3):767-786. PubMed ID: 26085375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rice phytoglobins regulate responses under low mineral nutrients and abiotic stresses in Arabidopsis thaliana.
    Shankar A; Fernandes JL; Kaur K; Sharma M; Kundu S; Pandey GK
    Plant Cell Environ; 2018 Jan; 41(1):215-230. PubMed ID: 29044557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climate and soil-age constraints on nutrient uplift and retention by plants.
    Porder S; Chadwick OA
    Ecology; 2009 Mar; 90(3):623-36. PubMed ID: 19341134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potassium nutrition, sodium toxicity, and calcium signaling: connections through the CBL-CIPK network.
    Luan S; Lan W; Chul Lee S
    Curr Opin Plant Biol; 2009 Jun; 12(3):339-46. PubMed ID: 19501014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaf cell membrane stability-based mechanisms of zinc nutrition in mitigating salinity stress in rice.
    Tufail A; Li H; Naeem A; Li TX
    Plant Biol (Stuttg); 2018 Mar; 20(2):338-345. PubMed ID: 29148143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordinated Transport of Nitrate, Potassium, and Sodium.
    Raddatz N; Morales de Los Ríos L; Lindahl M; Quintero FJ; Pardo JM
    Front Plant Sci; 2020; 11():247. PubMed ID: 32211003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potassium and phosphorus transport and signaling in plants.
    Wang Y; Chen YF; Wu WH
    J Integr Plant Biol; 2021 Jan; 63(1):34-52. PubMed ID: 33325114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na(+) root-to-shoot distribution.
    Porcel R; Aroca R; Azcon R; Ruiz-Lozano JM
    Mycorrhiza; 2016 Oct; 26(7):673-84. PubMed ID: 27113587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.