These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31624928)

  • 1. The Core-Shell Heterostructure CNT@Li
    Peng T; Guo W; Zhang Y; Wang Y; Zhu K; Guo Y; Wang Y; Lu Y; Yan H
    Nanoscale Res Lett; 2019 Oct; 14(1):326. PubMed ID: 31624928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hollow Hemispherical Lithium Iron Silicate Synthesized by an Ascorbic Acid-Assisted Hydrothermal Method as a Cathode Material for Li Ion Batteries.
    Li H; Li Y; Cheng X; Gong C
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Barium Doped Li2FeSiO4 Cathode Material for Li-Ion Secondary Batteries.
    Kim C; Yoo GW; Son JT
    J Nanosci Nanotechnol; 2015 Nov; 15(11):8808-12. PubMed ID: 26726598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Energy Density Li-O
    Lee H; Lee DJ; Kim M; Kim H; Cho YS; Kwon HJ; Lee HC; Park CR; Im D
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17385-17395. PubMed ID: 32212667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional macroporous graphene-Li₂FeSiO₄ composite as cathode material for lithium-ion batteries with superior electrochemical performances.
    Zhu H; Wu X; Zan L; Zhang Y
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11724-33. PubMed ID: 24963998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced graphene oxide modified Li2FeSiO4/C composite with enhanced electrochemical performance as cathode material for lithium ion batteries.
    Zhang LL; Duan S; Yang XL; Peng G; Liang G; Huang YH; Jiang Y; Ni SB; Li M
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12304-9. PubMed ID: 24195648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailored multifunctional hybrid cathode substrate configured with carbon nanotube-modified polar Co(PO
    Song Z; Lu X; Li X; Jiang N; Huo Y; Zheng Q; Lin D
    J Colloid Interface Sci; 2020 Sep; 575():220-230. PubMed ID: 32361238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano/micro lithium transitionmetal (Fe, Mn, Co and Ni) silicate cathode materials for lithium ion batteries.
    Zhang Q; Zhao Y; Su C; Li M
    Recent Pat Nanotechnol; 2011 Nov; 5(3):225-33. PubMed ID: 21777180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silicon/Mesoporous Carbon/Crystalline TiO
    Luo W; Wang Y; Wang L; Jiang W; Chou SL; Dou SX; Liu HK; Yang J
    ACS Nano; 2016 Nov; 10(11):10524-10532. PubMed ID: 27786460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Core-shell structured MnSiO
    Feng J; Li Q; Wang H; Zhang M; Yang X; Yuan R; Chai Y
    Dalton Trans; 2018 Apr; 47(15):5328-5334. PubMed ID: 29589020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soft-template construction of three-dimensionally ordered inverse opal structure from Li2FeSiO4/C composite nanofibers for high-rate lithium-ion batteries.
    Li D; Zhang W; Sun R; Yong HT; Chen G; Fan X; Gou L; Mao Y; Zhao K; Tian M
    Nanoscale; 2016 Jun; 8(24):12202-14. PubMed ID: 27251876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon Loaded Nano-Designed Spherically High Symmetric Lithium Iron Orthosilicate Cathode Materials for Lithium Secondary Batteries.
    Karuppiah D; Palanisamy R; Rengapillai S; Liu WR; Huang CH; Marimuthu S
    Polymers (Basel); 2019 Oct; 11(10):. PubMed ID: 31627323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyethylene-glycol-doped polypyrrole increases the rate performance of the cathode in lithium-sulfur batteries.
    Wu F; Chen J; Li L; Zhao T; Liu Z; Chen R
    ChemSusChem; 2013 Aug; 6(8):1438-44. PubMed ID: 23788469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon-nanotube-encapsulated FeF₂ nanorods for high-performance lithium-ion cathode materials.
    Zhou J; Zhang D; Zhang X; Song H; Chen X
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21223-9. PubMed ID: 25399691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing LiFePO₄@C core-shell structures via the 3-aminophenol-formaldehyde polymerization for improved battery performance.
    Chi ZX; Zhang W; Wang XS; Cheng FQ; Chen JT; Cao AM; Wan LJ
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22719-25. PubMed ID: 25453295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface Heterostructure Induced by PrPO
    Ding F; Li J; Deng F; Xu G; Liu Y; Yang K; Kang F
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):27936-27945. PubMed ID: 28758399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Cl Doping on Electrochemical Performance in Orthosilicate (Li
    Singh S; Raj AK; Sen R; Johari P; Mitra S
    ACS Appl Mater Interfaces; 2017 Aug; 9(32):26885-26896. PubMed ID: 28721729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Architecting hierarchical shell porosity of hollow prussian blue-derived iron oxide for enhanced Li storage.
    Zhao Z; Liu X; Luan C; Liu X; Wang D; Qin T; Sui L; Zhang W
    J Microsc; 2019 Nov; 276(2):53-62. PubMed ID: 31603242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. General strategy for designing core-shell nanostructured materials for high-power lithium ion batteries.
    Shen L; Li H; Uchaker E; Zhang X; Cao G
    Nano Lett; 2012 Nov; 12(11):5673-8. PubMed ID: 23092272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanowormlike Li2FeSiO4-C composites as lithium-ion battery cathodes with superior high-rate capability.
    Wu X; Wang X; Zhang Y
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2510-6. PubMed ID: 23461353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.