These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
391 related articles for article (PubMed ID: 31625023)
1. Confocal Microscopy Confirmed that in Phosphatidylcholine Giant Unilamellar Vesicles with very High Cholesterol Content Pure Cholesterol Bilayer Domains Form. Raguz M; Kumar SN; Zareba M; Ilic N; Mainali L; Subczynski WK Cell Biochem Biophys; 2019 Dec; 77(4):309-317. PubMed ID: 31625023 [TBL] [Abstract][Full Text] [Related]
2. Formation of cholesterol Bilayer Domains Precedes Formation of Cholesterol Crystals in Membranes Made of the Major Phospholipids of Human Eye Lens Fiber Cell Plasma Membranes. Mainali L; Pasenkiewicz-Gierula M; Subczynski WK Curr Eye Res; 2020 Feb; 45(2):162-172. PubMed ID: 31462080 [No Abstract] [Full Text] [Related]
3. Effect of Electrical Parameters and Cholesterol Concentration on Giant Unilamellar Vesicles Electroformation. Boban Z; Puljas A; Kovač D; Subczynski WK; Raguz M Cell Biochem Biophys; 2020 Jun; 78(2):157-164. PubMed ID: 32319021 [TBL] [Abstract][Full Text] [Related]
4. Cholesterol and cholesterol bilayer domains inhibit binding of alpha-crystallin to the membranes made of the major phospholipids of eye lens fiber cell plasma membranes. Timsina R; Trossi-Torres G; O'Dell M; Khadka NK; Mainali L Exp Eye Res; 2021 May; 206():108544. PubMed ID: 33744256 [TBL] [Abstract][Full Text] [Related]
5. Is the cholesterol bilayer domain a barrier to oxygen transport into the eye lens? Plesnar E; Szczelina R; Subczynski WK; Pasenkiewicz-Gierula M Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):434-441. PubMed ID: 29079282 [TBL] [Abstract][Full Text] [Related]
6. Detection of cholesterol bilayer domains in intact biological membranes: Methodology development and its application to studies of eye lens fiber cell plasma membranes. Mainali L; O'Brien WJ; Subczynski WK Exp Eye Res; 2019 Jan; 178():72-81. PubMed ID: 30278157 [TBL] [Abstract][Full Text] [Related]
7. Properties of membranes derived from the total lipids extracted from clear and cataractous lenses of 61-70-year-old human donors. Mainali L; Raguz M; O'Brien WJ; Subczynski WK Eur Biophys J; 2015 Feb; 44(1-2):91-102. PubMed ID: 25502634 [TBL] [Abstract][Full Text] [Related]
8. Mechanical properties of the high cholesterol-containing membrane: An AFM study. Khadka NK; Timsina R; Rowe E; O'Dell M; Mainali L Biochim Biophys Acta Biomembr; 2021 Aug; 1863(8):183625. PubMed ID: 33891910 [TBL] [Abstract][Full Text] [Related]
9. Membrane Models and Experiments Suitable for Studies of the Cholesterol Bilayer Domains. Mardešić I; Boban Z; Subczynski WK; Raguz M Membranes (Basel); 2023 Mar; 13(3):. PubMed ID: 36984707 [TBL] [Abstract][Full Text] [Related]
10. Cholesterol Bilayer Domains in the Eye Lens Health: A Review. Widomska J; Subczynski WK; Mainali L; Raguz M Cell Biochem Biophys; 2017 Dec; 75(3-4):387-398. PubMed ID: 28660427 [TBL] [Abstract][Full Text] [Related]
11. Membrane fluidity and lipid order in ternary giant unilamellar vesicles using a new bodipy-cholesterol derivative. Ariola FS; Li Z; Cornejo C; Bittman R; Heikal AA Biophys J; 2009 Apr; 96(7):2696-708. PubMed ID: 19348752 [TBL] [Abstract][Full Text] [Related]
12. Atomistic Picture of Fluorescent Probes with Hydrocarbon Tails in Lipid Bilayer Membranes: An Investigation of Selective Affinities and Fluorescent Anisotropies in Different Environmental Phases. Knippenberg S; Fabre G; Osella S; Di Meo F; Paloncýová M; Ameloot M; Trouillas P Langmuir; 2018 Jul; 34(30):9072-9084. PubMed ID: 29983063 [TBL] [Abstract][Full Text] [Related]
13. Membrane elasticity modulated by cholesterol in model of porcine eye lens-lipid membrane. Khadka NK; Mortimer MF; Marosvari M; Timsina R; Mainali L Exp Eye Res; 2022 Jul; 220():109131. PubMed ID: 35636489 [TBL] [Abstract][Full Text] [Related]
14. Fluorescent probe partitioning in giant unilamellar vesicles of 'lipid raft' mixtures. Juhasz J; Davis JH; Sharom FJ Biochem J; 2010 Sep; 430(3):415-23. PubMed ID: 20642452 [TBL] [Abstract][Full Text] [Related]
15. The immiscible cholesterol bilayer domain exists as an integral part of phospholipid bilayer membranes. Raguz M; Mainali L; Widomska J; Subczynski WK Biochim Biophys Acta; 2011 Apr; 1808(4):1072-80. PubMed ID: 21192917 [TBL] [Abstract][Full Text] [Related]
16. A comparative study on fluorescent cholesterol analogs as versatile cellular reporters. Sezgin E; Can FB; Schneider F; Clausen MP; Galiani S; Stanly TA; Waithe D; Colaco A; Honigmann A; Wüstner D; Platt F; Eggeling C J Lipid Res; 2016 Feb; 57(2):299-309. PubMed ID: 26701325 [TBL] [Abstract][Full Text] [Related]
17. Using spin-label electron paramagnetic resonance (EPR) to discriminate and characterize the cholesterol bilayer domain. Raguz M; Mainali L; Widomska J; Subczynski WK Chem Phys Lipids; 2011 Nov; 164(8):819-29. PubMed ID: 21855534 [TBL] [Abstract][Full Text] [Related]
18. Cholesterol Content Regulates the Interaction of αA-, αB-, and α-Crystallin with the Model of Human Lens-Lipid Membranes. Timsina R; Hazen P; Trossi-Torres G; Khadka NK; Kalkat N; Mainali L Int J Mol Sci; 2024 Feb; 25(3):. PubMed ID: 38339200 [TBL] [Abstract][Full Text] [Related]
19. Methyl-β-cyclodextrins preferentially remove cholesterol from the liquid disordered phase in giant unilamellar vesicles. Sanchez SA; Gunther G; Tricerri MA; Gratton E J Membr Biol; 2011 May; 241(1):1-10. PubMed ID: 21468650 [TBL] [Abstract][Full Text] [Related]
20. Homogeneous and Heterogeneous Bilayers of Ternary Lipid Compositions Containing Equimolar Ceramide and Cholesterol. González-Ramírez EJ; Artetxe I; García-Arribas AB; Goñi FM; Alonso A Langmuir; 2019 Apr; 35(15):5305-5315. PubMed ID: 30924341 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]