These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31625107)

  • 1. Mammalian Surface Display Screening of Diverse Cystine-Dense Peptide Libraries for Difficult-to-Drug Targets.
    Crook ZR; Sevilla GP; Mhyre AJ; Olson JM
    Methods Mol Biol; 2020; 2070():363-396. PubMed ID: 31625107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mammalian display screening of diverse cystine-dense peptides for difficult to drug targets.
    Crook ZR; Sevilla GP; Friend D; Brusniak MY; Bandaranayake AD; Clarke M; Gewe M; Mhyre AJ; Baker D; Strong RK; Bradley P; Olson JM
    Nat Commun; 2017 Dec; 8(1):2244. PubMed ID: 29269835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ex silico engineering of cystine-dense peptides yielding a potent bispecific T cell engager.
    Crook ZR; Girard EJ; Sevilla GP; Brusniak MY; Rupert PB; Friend DJ; Gewe MM; Clarke M; Lin I; Ruff R; Pakiam F; Phi TD; Bandaranayake A; Correnti CE; Mhyre AJ; Nairn NW; Strong RK; Olson JM
    Sci Transl Med; 2022 May; 14(645):eabn0402. PubMed ID: 35584229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clustering of disulfide-rich peptides provides scaffolds for hit discovery by phage display: application to interleukin-23.
    Barkan DT; Cheng XL; Celino H; Tran TT; Bhandari A; Craik CS; Sali A; Smythe ML
    BMC Bioinformatics; 2016 Nov; 17(1):481. PubMed ID: 27881076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo discovery of bioactive cyclic peptides using bacterial display and flow cytometry.
    Shivange AV; Daugherty PS
    Methods Mol Biol; 2015; 1248():139-53. PubMed ID: 25616331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A TfR-Binding Cystine-Dense Peptide Promotes Blood-Brain Barrier Penetration of Bioactive Molecules.
    Crook ZR; Girard E; Sevilla GP; Merrill M; Friend D; Rupert PB; Pakiam F; Nguyen E; Yin C; Ruff RO; Hopping G; Strand AD; Finton KAK; Coxon M; Mhyre AJ; Strong RK; Olson JM
    J Mol Biol; 2020 Jun; 432(14):3989-4009. PubMed ID: 32304700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methods for the creation of cyclic Peptide libraries for use in lead discovery.
    Foster AD; Ingram JD; Leitch EK; Lennard KR; Osher EL; Tavassoli A
    J Biomol Screen; 2015 Jun; 20(5):563-76. PubMed ID: 25586497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide Display Technologies.
    Pitt A; Nims Z
    Methods Mol Biol; 2019; 2001():285-298. PubMed ID: 31134576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CysPresso: a classification model utilizing deep learning protein representations to predict recombinant expression of cysteine-dense peptides.
    Ouellet S; Ferguson L; Lau AZ; Lim TKY
    BMC Bioinformatics; 2023 May; 24(1):200. PubMed ID: 37193950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of an interloop disulfide bond in high-affinity antibody mimics based on fibronectin type III domain and selected by yeast surface display: molecular convergence with single-domain camelid and shark antibodies.
    Lipovsek D; Lippow SM; Hackel BJ; Gregson MW; Cheng P; Kapila A; Wittrup KD
    J Mol Biol; 2007 May; 368(4):1024-41. PubMed ID: 17382960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phage selection of bicyclic peptides based on two disulfide bridges.
    Chen S; Heinis C
    Methods Mol Biol; 2015; 1248():119-37. PubMed ID: 25616330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetically Encoded Cyclic Peptide Libraries: From Hit to Lead and Beyond.
    Valentine J; Tavassoli A
    Methods Enzymol; 2018; 610():117-134. PubMed ID: 30390796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Therapeutic Antibody Engineering and Selection Strategies.
    Ministro J; Manuel AM; Goncalves J
    Adv Biochem Eng Biotechnol; 2020; 171():55-86. PubMed ID: 31776591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multicyclic Peptides as Scaffolds for the Development of Tumor Targeting Agents.
    Loktev A; Haberkorn U; Mier W
    Curr Med Chem; 2017; 24(20):2141-2155. PubMed ID: 28302013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phage display selection of tight specific binding variants from a hyperthermostable Sso7d scaffold protein library.
    Zhao N; Schmitt MA; Fisk JD
    FEBS J; 2016 Apr; 283(7):1351-67. PubMed ID: 26835881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in phage display technology for drug discovery.
    Omidfar K; Daneshpour M
    Expert Opin Drug Discov; 2015 Jun; 10(6):651-69. PubMed ID: 25910798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Library and post-translational modifications of peptide-based display systems.
    Dotter H; Boll M; Eder M; Eder AC
    Biotechnol Adv; 2021; 47():107699. PubMed ID: 33513435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide discovery using bacterial display and flow cytometry.
    Getz JA; Schoep TD; Daugherty PS
    Methods Enzymol; 2012; 503():75-97. PubMed ID: 22230566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mammalian cell display and somatic hypermutation in vitro for human antibody discovery.
    King DJ; Bowers PM; Kehry MR; Horlick RA
    Curr Drug Discov Technol; 2014 Mar; 11(1):56-64. PubMed ID: 23978037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disulfide-constrained peptide scaffolds enable a robust peptide-therapeutic discovery platform.
    Zhou L; Cai F; Li Y; Gao X; Wei Y; Fedorova A; Kirchhofer D; Hannoush RN; Zhang Y
    PLoS One; 2024; 19(3):e0300135. PubMed ID: 38547109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.