These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 31625446)
1. New insights of CRISPR technology in human pathogenic fungi. Román E; Prieto D; Alonso-Monge R; Pla J Future Microbiol; 2019 Sep; 14():1243-1255. PubMed ID: 31625446 [TBL] [Abstract][Full Text] [Related]
2. CRISPR/Cas9 genome editing technology in filamentous fungi: progress and perspective. Song R; Zhai Q; Sun L; Huang E; Zhang Y; Zhu Y; Guo Q; Tian Y; Zhao B; Lu H Appl Microbiol Biotechnol; 2019 Sep; 103(17):6919-6932. PubMed ID: 31332488 [TBL] [Abstract][Full Text] [Related]
3. SpRY Cas9 Can Utilize a Variety of Protospacer Adjacent Motif Site Sequences To Edit the Candida albicans Genome. Evans BA; Bernstein DA mSphere; 2021 May; 6(3):. PubMed ID: 34011687 [No Abstract] [Full Text] [Related]
5. Current situation of biofuel production and its enhancement by CRISPR/Cas9-mediated genome engineering of microbial cells. Javed MR; Noman M; Shahid M; Ahmed T; Khurshid M; Rashid MH; Ismail M; Sadaf M; Khan F Microbiol Res; 2019 Feb; 219():1-11. PubMed ID: 30642460 [TBL] [Abstract][Full Text] [Related]
6. Implementation of a CRISPR-Based System for Gene Regulation in Román E; Coman I; Prieto D; Alonso-Monge R; Pla J mSphere; 2019 Feb; 4(1):. PubMed ID: 30760608 [TBL] [Abstract][Full Text] [Related]
7. CRISPR/Cas9-based genome engineering: A new breakthrough in the genetic manipulation of filamentous fungi. Ullah M; Xia L; Xie S; Sun S Biotechnol Appl Biochem; 2020 Nov; 67(6):835-851. PubMed ID: 33179815 [TBL] [Abstract][Full Text] [Related]
8. Genome editing technologies to fight infectious diseases. Trevisan M; Palù G; Barzon L Expert Rev Anti Infect Ther; 2017 Nov; 15(11):1001-1013. PubMed ID: 29090592 [TBL] [Abstract][Full Text] [Related]
9. Dramatic Improvement of CRISPR/Cas9 Editing in Ng H; Dean N mSphere; 2017; 2(2):. PubMed ID: 28435892 [TBL] [Abstract][Full Text] [Related]
10. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology. Khan MHU; Khan SU; Muhammad A; Hu L; Yang Y; Fan C J Cell Physiol; 2018 Jun; 233(6):4578-4594. PubMed ID: 29194606 [TBL] [Abstract][Full Text] [Related]
11. The application of CRISPR/Cas9 in genome editing of filamentous fungi. Li HH; Liu G Yi Chuan; 2017 May; 39(5):355-367. PubMed ID: 28487268 [TBL] [Abstract][Full Text] [Related]
12. Use of CRISPR-Cas9 To Target Homologous Recombination Limits Transformation-Induced Genomic Changes in Candida albicans. Marton T; Maufrais C; d'Enfert C; Legrand M mSphere; 2020 Sep; 5(5):. PubMed ID: 32878930 [TBL] [Abstract][Full Text] [Related]
13. New CRISPR Mutagenesis Strategies Reveal Variation in Repair Mechanisms among Fungi. Vyas VK; Bushkin GG; Bernstein DA; Getz MA; Sewastianik M; Barrasa MI; Bartel DP; Fink GR mSphere; 2018 Apr; 3(2):. PubMed ID: 29695624 [TBL] [Abstract][Full Text] [Related]
14. CRISPR-Cas9 genome editing approaches in filamentous fungi and oomycetes. Schuster M; Kahmann R Fungal Genet Biol; 2019 Sep; 130():43-53. PubMed ID: 31048007 [TBL] [Abstract][Full Text] [Related]
15. CRISPR/Cas9-based genome editing of the filamentous fungi: the state of the art. Shi TQ; Liu GN; Ji RY; Shi K; Song P; Ren LJ; Huang H; Ji XJ Appl Microbiol Biotechnol; 2017 Oct; 101(20):7435-7443. PubMed ID: 28887634 [TBL] [Abstract][Full Text] [Related]
16. Genome editing approaches: manipulating of lovastatin and taxol synthesis of filamentous fungi by CRISPR/Cas9 system. El-Sayed ASA; Abdel-Ghany SE; Ali GS Appl Microbiol Biotechnol; 2017 May; 101(10):3953-3976. PubMed ID: 28389711 [TBL] [Abstract][Full Text] [Related]
17. [Application of CRISPR/Cas9 mediated genome editing in farm animals]. Xing YY; Yang Q; Ren J Yi Chuan; 2016 Mar; 38(3):217-26. PubMed ID: 27001476 [TBL] [Abstract][Full Text] [Related]
18. RNA interference and CRISPR: Promising approaches to better understand and control citrus pathogens. Goulin EH; Galdeano DM; Granato LM; Matsumura EE; Dalio RJD; Machado MA Microbiol Res; 2019 Sep; 226():1-9. PubMed ID: 31284938 [TBL] [Abstract][Full Text] [Related]
19. The CRISPR-Cas system for plant genome editing: advances and opportunities. Kumar V; Jain M J Exp Bot; 2015 Jan; 66(1):47-57. PubMed ID: 25371501 [TBL] [Abstract][Full Text] [Related]
20. CRISPR/Cas 9-Based Editing in the Production of Bioactive Molecules. Bhagwat AC; Patil AM; Saroj SD Mol Biotechnol; 2022 Mar; 64(3):245-251. PubMed ID: 34643870 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]