These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 31625526)
1. Structural characteristics analysis of the hind wings in a bamboo weevil ( Li X; Guo C IET Nanobiotechnol; 2019 Oct; 13(8):850-856. PubMed ID: 31625526 [TBL] [Abstract][Full Text] [Related]
2. Microstructure and material properties of hind wings of a bamboo weevil Cyrtotrachelus buqueti (Coleoptera: Curculionidae). Li X; Guo C Microsc Res Tech; 2019 Jul; 82(7):1102-1113. PubMed ID: 30920089 [TBL] [Abstract][Full Text] [Related]
3. Wing-kinematics measurement and flight modelling of the bamboo weevil Li X; Guo C IET Nanobiotechnol; 2020 Feb; 14(1):53-58. PubMed ID: 31935678 [TBL] [Abstract][Full Text] [Related]
4. Functional characteristics of the rigid elytra in a bamboo weevil beetle Cyrtotrachelus buqueti. Li X; Zheng Y IET Nanobiotechnol; 2022 Sep; 16(7-8):273-283. PubMed ID: 35962575 [TBL] [Abstract][Full Text] [Related]
5. Functional morphology and structural characteristics of the hind wings of the bamboo weevil Li X; Guo C; Li L Anim Cells Syst (Seoul); 2019 Apr; 23(2):143-153. PubMed ID: 30949402 [TBL] [Abstract][Full Text] [Related]
6. Structural response and mechanical properties of the hind wing of the beetle Protaetia brevitarsis. Li X; Zheng Y Microsc Res Tech; 2024 Sep; 87(9):2013-2026. PubMed ID: 38623765 [TBL] [Abstract][Full Text] [Related]
7. Biomechanical properties of insect wings: the stress stiffening effects on the asymmetric bending of the Allomyrina dichotoma beetle's hind wing. Ha NS; Truong QT; Goo NS; Park HC PLoS One; 2013; 8(12):e80689. PubMed ID: 24339878 [TBL] [Abstract][Full Text] [Related]
8. Flexural stiffness in insect wings. I. Scaling and the influence of wing venation. Combes SA; Daniel TL J Exp Biol; 2003 Sep; 206(Pt 17):2979-87. PubMed ID: 12878666 [TBL] [Abstract][Full Text] [Related]
9. Flexural stiffness in insect wings. II. Spatial distribution and dynamic wing bending. Combes SA; Daniel TL J Exp Biol; 2003 Sep; 206(Pt 17):2989-97. PubMed ID: 12878667 [TBL] [Abstract][Full Text] [Related]
10. Effects of blood in veins of dragonfly wing on the vibration characteristics. Hou D; Yin Y; Zhao H; Zhong Z Comput Biol Med; 2015 Mar; 58():14-9. PubMed ID: 25577611 [TBL] [Abstract][Full Text] [Related]
11. Nanoindentation Properties and Finite Element Analysis of the Rostrum of Cyrtotrachelus buqueti Guer (Coleoptera: Curculionidae). Li L; Guo C; Xu S; Ma Y; Yu Z Microsc Microanal; 2019 Jun; 25(3):786-797. PubMed ID: 30898184 [TBL] [Abstract][Full Text] [Related]
12. Effects of pterostigma structure on vibrational characteristics during flight of Asian ladybird Harmonia axyridis (Coleoptera: Coccinellidae). Song ZL; Tong J; Yan YW; Sun JY Sci Rep; 2020 Jul; 10(1):11371. PubMed ID: 32647317 [TBL] [Abstract][Full Text] [Related]
13. Functional compliance and protective stiffness: cross-veins in the hind wing of locust Locusta migratoria. Zhao W; Ma Q; Li Z; Wan C J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 Mar; 209(2):231-237. PubMed ID: 36289065 [TBL] [Abstract][Full Text] [Related]
14. Tensile mechanical properties and finite element simulation of the wings of the butterfly Tirumala limniace. Shen H; Ji A; Li Q; Li X; Ma Y J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 Mar; 209(2):239-251. PubMed ID: 35840718 [TBL] [Abstract][Full Text] [Related]
15. Basal Complex and Basal Venation of Odonata Wings: Structural Diversity and Potential Role in the Wing Deformation. Rajabi H; Ghoroubi N; Malaki M; Darvizeh A; Gorb SN PLoS One; 2016; 11(8):e0160610. PubMed ID: 27513753 [TBL] [Abstract][Full Text] [Related]
16. Biomechanics of fore wing to hind wing coupling in the southern green stink bug Nezara viridula (Pentatomidae). Ma Y; Wan C; Gorb S; Rajabi H Acta Biomater; 2019 Dec; 100():10-17. PubMed ID: 31542500 [TBL] [Abstract][Full Text] [Related]
17. Effects of spanwise flexibility on the performance of flapping flyers in forward flight. Kodali D; Medina C; Kang CK; Aono H J R Soc Interface; 2017 Nov; 14(136):. PubMed ID: 29167372 [TBL] [Abstract][Full Text] [Related]
18. Biomechanical aspects of the insect wing: an analysis using the finite element method. Kesel AB; Philippi U; Nachtigall W Comput Biol Med; 1998 Jul; 28(4):423-37. PubMed ID: 9805202 [TBL] [Abstract][Full Text] [Related]
19. Wing cross veins: an efficient biomechanical strategy to mitigate fatigue failure of insect cuticle. Rajabi H; Bazargan P; Pourbabaei A; Eshghi S; Darvizeh A; Gorb SN; Taylor D; Dirks JH Biomech Model Mechanobiol; 2017 Dec; 16(6):1947-1955. PubMed ID: 28624880 [TBL] [Abstract][Full Text] [Related]
20. [Relationships among Cyrtotrachelus buqueti larval density and wormhole number and bamboo shoot damage degree]. Yang YJ; Wang SF; Gong JW; Liu C; Mu C; Qin H Ying Yong Sheng Tai Xue Bao; 2009 Aug; 20(8):1980-5. PubMed ID: 19947221 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]